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A Parallel Algorithm of Davidson Method for Solving and
Electomagnetic Problem

Kim, Hyong Joong' * Zhu Yu~

ABSTRACT:

The analysis of eigenvalue and eigenvector is a crucial procedure for many electromagnetic

computation problems. Although it is always the case in practice that only selected eigenpairs are

needed, computation of eigenpair still seems to be a time-consuming task. In order to compute

the eigenpair more quickly, there are two resorts: one is to select a good algorithm with care and

another is to use parallelization technique to improve the speed of the computing. In this paper,

one of the best eigensolver, the Davidson method, is parallelized on a cluster of workstations.

We apply this scheme to a ridged waveguide design problem and obtain promising linear

speedup and scalability.

1. INTRODUCTION

(1) Waveguide Design Problem: In
electromagnetics, the analysis of eigenvalues
and eigenvectors in both closed and open
structures enables us to understand the
performances of the structures. This kind of
problem is common in designing the ridged
waveguide. Ridged waveguides have many
applications in microwave and antenna systems
because of their unique characteristics of low
cut-off frequency, wide bandwidth and low
impedance compatible with coaxial cables [12].
The electric fields in a cylinderical waveguide
satisfy the Helmholtz equation:l)
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nX v X E={( on magnetic conductor (3)

The electric fields in the waveguide, then,
can be expressed as:

E,9,d=[2E,(x, )+ YE ,(x,9)] e

Kat— k,2)

4)
Applying Galerkins method to (1) with (4) and
vector identities, the final integral equation is:

[(oxBy-(vx W) ds=k?[E- Wids ®
where

k%=kg€r#r_k§ 6

and_ﬁ denotes the shape function of edge based

the final eigenvalue problem to be solved for the
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analysis is obtained in the matrix formnd
KE = AME ()

It is a generalized eigenvalue problem. However,
(7) can be transformed into

Ax=4dx (8)
is an

where A is a dense matrix and A

eigenvalue of an nXn matrix A, and x is its
corresponding eigenvector. Then the problem is
to solve the standard eigenvalue problem of (8).
In addition, A is real and symmetric in this
paper.

(2) Eigensystem Solver: There are several
methods dealing with the eigenpair computation
problems: Power method [7], Householders and
Jacobis diagonalization method [6, 7], Lanczos
method [6, 8], Arnoldis method [9, 10], and the
Davidson methods [11, 10, 1, 2]. The latter
method has been reported to be quite successful
[1, 2]. Davidson method can be regarded as a
preconditioned version of the Lanczos method.
Although when used with a poor preconditioner
it will take long time, the Davidson method may
overcome the Lanczos method tremendously [1].
Moreover, it is suitable to be parallelized [2]. So
it seems to be a promising method for
eigenvalue problem in many  applications
including electromagnetic fields computation. The
Davidsons algorithm that computes the largest
or the smallest eigenvalue of the matrix A can
be prescribed as follows [1, 2]:

Choose an initial unit vector v, : V,:=1[ v, ]
fork =1, .. do

Compute the iteration matrix : H,= V4, AV,
Compute the largest (smallest) eigenpair
(tg, ¥p) of Hy;

Compute  the  corresponding

Xp= Vi yis

Ritz  vector
Compute the residual #,=( u,J—A) x4 ;

If convergence then exit;
Compute the new direction to be incorporated

tpv1= (pel—D) ! ¥4

Orthogonalize  the into
Vv

end for

system [ Vi #441]

Fig. 1 : Davidsons Algorithm

(3) Hardware Configuration: The network-based
computing with cluster of workstations recently
has become a successful technique because it is
inexpensive and scalable. In our experiment,
three HP workstations, the C160s, connected by
10Mbps standard Ethernet, are employed to
parallelize the Davidson method. However, our
parallelization scheme can be applied to any
bus-based multidrop configuration.

(4) PVM: The program is developed upon PVM,
Parallel Virtual Machine [5]. The PVM is a
middleware that permits a network of
heterogeneous Unix computers to be used as a
single large parallel computer. Under the PVM,
a user-defined collection of computers appears
as one large distributed-memory computer [5].
By sending and receiving messages, multiple
tasks of an application can cooperate to solve a
problem in parallel. The PVM is freely available,
well designed, and not restricted to any specified
type of machine so it is now widely used and
becomes almost a standard for message-passing
system developing tool like MPI (Message
Passing Interface).

2. Parallelization Strategy

Two typical programming models in distributed
memory system are SPMD (Single Program,
Muiltiple Data) and Master/Slave [5]. Even
though the Davidson method is an eigensystem
solver, it computes eigenpairs indirectly from a
very small kX% matrix H, , the interaction
matrix, rather than directly from the large-scale
matrix A. The size of the interaction matrix
H,
increases. Thus, performance of the Davidson
method may depend on the number of iterations.
smaller than»z that the

increases as the iteration number &

However, % is so
complexity of computing eigenvalue of H, is

trivial as long as A is dense.
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In general, the eigensolver itself is difficult to
parallelize. We apply the Householder transform to
get a tridiagonal matrix, and use bisection
algorithm to find a root of the characteristic
polynomial. This procedure is still far from
parallelization. In addition, the matrix H, is not

worth to be parallelized as long as % is small as
mentioned before. Thus, it is better to employ the
Master/Slave model in which the master solves
this small eigenvalue problem while the salves
take over the tasks of computing the most time
consuming step: the matrix-vector multiplication

and orthogonalization [2]. Our main idea is that

every slave holds a part of the matrix A to
execute the matrix-vector multiplication and the
orthogonalization in parallel, which is - the
bottleneck of the Davidsons algorithm. Our
algorithm is shown as in Figure 2 and 3, where
the m stands for the number of the slaves, £
stands for the #=n/m (for brevity, we assume is
n/m an integer). In addition, the representation
syntax in the Matlab [3] is used for easier
understanding. '

1. Initialize the wyorking space, start the
slaves;

for k=1, ...do H,(k:)=0;

2.fori=1:mdo

Receive the interaction matrices H,(k,:)
from slaves and add them together :
Hy(k,:)= H,(k:)+ Hp(k:)
Hi(k:)=H (k)

3. Compute the largest eigenpair ( g4, v )
of H,

4. If convergence then exit ;

5. Broadcast the to the slaves ( g4,y )

end for k;

1. Read submatrices

A ,=A(gp :(¢g+1)p—1,:)from the disk,
get part of the diagnal of A :.

2. d,=D(gp:(g+1)p—1) where D stands
for the diagnal of A,

While not finished do

3. Compute, b,= A, Vk(:,k); and
Bi=[ Bp-1: by 1pxss

4, Compute

H (k:)=V {qg:q+p+1,:) b, send
it to master;

5. Receive the largest eigenpair ( f,, ¥)
from master ;

6. Compute part of the new direction to be
incoporated

t_kq=
(By—p Vilg:igtp—1,) vi./(dy— 1)

7. Fori=1"'k

compute the coefficients to be used in the
orthogonalization

7 () =< th, Velg:g+p—1,7)>
8. Broadcast the r(i) to the other slaves ;

9. Fori=1:m -1 do receive r, from other
slaves and 7 ,= 7r,+ 7,,

10. for i =1 k do
tw= t— 7:(D) Vilgig+p—1,0;
11. Broadcast the ¢, to other slaves ;

12. for i = 1 : m-1 do receive f; except &
from other slaves and construct the whole
new direction vector ¢4+ ;

13. Normalize the #,4; = l‘kﬁ/” tps1ll and
Vier=[ Vi tes1l

end while

Fig. 2: Algorithm of the Master

Fig. 3: Algorithm of the ‘gth Slave
3. Experimental Results

A. Dense Matrix

In our experiments, we first apply our algorithm
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to a real world eigenvalue problem derived from
a ridged waveguides design (we denote it stiff
below) [12]. The resultant matrix is a 677X677
dense (see Table I). Total number of iterations
is just 39. Thus, the number of operations for
computing eigenvalue of H, is far less than

that of matrix-vector multiplication, which
justifies the Master/Slave model

Table I: Description of the Matrix from the Ridged
Wavequide Design

2

# of Maximum

mensio ensi L e
n Y Lteration Eigenvalue

Name
Resource

stiff  See [12] 677 full 39 7.641128e+07

Table Il Timing Data of the Matrix Stiff (Timing
Unit: Seconds)
# of Workstations Timing Speedup
1 18,689 1.0000
2 9.4964 1.9680
3 6.4958 2.8771

Then, can we get the same promising results
with the sparse matrices? To answer this
we select the artificial

question, sparse test

matrix set as in [1] given below:
if i=j normally distribued : N0, 5%)

a;= with probability a . N(0,1),

i #5 with probabitity (1— a):0.
)

Computation stops when

| wa— sy | <20 7H,

where the parameter g, is the convergent

eigenvalue at the kth iteration. The parameter a
is approximately the density of the matrix which
means the ratio e =(number
elements) / (nXn).

of non-zero

From Table II, it is clear that the speedup is
almost linear and scalable when A is dense.

The speedup of our scheme is satisfactory
which is 1.968 for 2 machines and 2.877 for 3
machines. At the same time its convergence
profile is shown in Figure 1. The convergence
speed is very fast which supports the claim that
Davidson method provides a second order
convergence near the solution [2]. In addition,
we compare the Davidson method with the
Power method. Figure 1 shows the convergence
profile of the Power method. Its convergence
speed is very slow. Of course, its parallelization
is straightforward. The power method relies
mainly on the matrix-vector multiplications
which is easy to parallelize. It is obvious the
Davidson method beats the Power method in
terms of the convergence rate as well as the
computing time.

B. Sparse Matrix

Table |- Description of the Testing Matrices
Name Matrix Dimension Density i O.f l}{[aximum

Resource Iteration Eigenvalue
testl Eq. (3) 8,000 0.0002 27 19.64068
test2 Eq. (3) 8,000 0.0010 66 23.15136
test3 Eq. (3) 8,000 0.0200 7 28.64236
test4 Eq. (3 12,000  0.0002 31 19.82698
test Eq. (3) 20,000 0.0002 23 2391715

Table |V: Timing Data of the Testing Matrices
Above (Unit: Seconds)
Wor:s;ftions testl test2 test3 testd testd
1 41394 11757 22741 26330 40997
2 26850 61400 11492 14754 23409
3 20718 68339 10603 13763  31.800
Table V: Speed-up Performance of Our
Parallelization Scheme
# of
Workstations testl test2 test3 testd testh
1 10000  1.0000  1.0000 10000 10000
2 15416 19149 19788 17843 17513
3 19980 17205 21447 19128  1.2903
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Fig. 4: The iteration profile of the Davidson method
and the Power Method

From the experiment results in Table IV and
V, we find that the speedup performance is not
as good as on the dense matrix when A is
sparse. The speed-up is in between 1.5 and 1.98
using two computers. The speed-up may not be
satisfactory for some sparse  problems
surprisingly when three computers are engaged.
From the speed-up results of testl, testZ and
test3 in Table III we find that the speed-up
increases radically as the number of non-zero
elements increases. Results of testl and test4
show that when the dimension of the problem

increases, speed-up increases obviously.
However, testdS shows that speed-up with three
computers can be lower than with two

machines. We can account for it below.

Frst we examine the multiplication flops
needed in the computing steps as given in Table
VI. Now we are able to estimate roughly the
theoretical speedup of our parallelization scheme.
The diagonalization may be estimated

approximately 2 k&3 / 3 flops and the computation
of the H, is estimated at (kn+a n%)/m. Note

that due to the difficulty in estimating the
communication time during the computation the
result can only demonstrate the relationship
between the speedup and the density of the
matrix of interest rather than the genuine data.
Figure 5 shows the relationship between
speed-up and number of iterations of matrices

with different @ .

It is obvious that the speedup becomes bad
when the density of the matrix decreases. This
helps explain the experimental results of the
unsatisfactory speedup stated above.

Table VI: Multiplications needed in the Davidson
Method of the kth lteration on the Single

Machine and on-m Machines:
Mutiplications on Mutiplications on

Computation Step

One Machine m_Machines
Computation of H, kn + an?) (kn + Ka n®))/n
Diagonalization of H ok 1Y) O( k% 1%
Computation of the Ritz n kn/ m
vectors
Computapon of the n kn / m
residuals
Orthogonalization okn %n / m
process

Note: Here denotes the density if the matrix of interest

32
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Number of Iteration

Fig. 5 The estimation of speedup vs. # of iterations
of a 2000X2000 matrices with various densities e

4. Conclusion and Future Worké

We present a parallel algorithm of the Davidson
method on a cluster of workstations. We apply the
algorithm solving a ridged waveguide design
problem and get a linear speedup and scalability. It
is totally due to the denseness of the resultant
matrix. However, speedup is not satisfactory when
a matrix is sparse.

As a result it is recommended that when using
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our algorithm in the same computing environment 7. G. H. Golub, and C. F. Van Loan, Matrix
described above the result may not be satisfactory Computations, 2nd ed., The John Hopkins
with high sparsity. However, our method works University Press, 1989.

successfully on a dense matrix and the speed'—up 8. C. Lanczos, "An Iteration Method for the
as well as the convergence rate are attractive. . .

Obviously, the boundary element methods produce Solution of the Eigenvalue Problem of

dense matrices. Therefore, our method will have a Linear Differential and Integral Operators”,
wide use in the application area. Journal of Research of the National Bureau
In addition we want to mention that the of Standards, vol. 45, pp. 255-282, 1950.

configuration stated above is not ideal for parallel g W, E. Armoldi, "The Principle of Minimized
computlrég s‘ltr;lce ththeh' r}lletW(()jrk 1S EOO S’]I?}YV Iterations in the Solution of the Matrix
compared Wi e high-end computers. e . B .
future works will include the parallelization of the Elgenvalue? Problem”, Quarterly of Applied
generalized eigenvalue algorithms and  the Mathematics, VOI_' 9, pp. 17-29, 1951.
Davidson algorithm for non-symmetric matrices. 10. Y. Saad, Numerical Methods for Large
Eigenvalue Problems, Manchester

University Press, Manchester, UK, 1992.
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