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Thermodynamics of Sound Velocity
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ABSTRACT

The sound velocity measurements can permit much higher precision than that obtainable in the
direct PVT experiments in addition to producing static and dynamic properties simultaneously, and
thus the study on the sound velocity has been considered as another important approach to a
fundamental understanding and description of the structure of fluids. This review deals with what
have been done on studies of the sound velocity for evaluating thermodynamic properties with an
emphasis on the development of the methods to extract the thermodynamic properties from the

experimental data on sound. velocity.
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1. INTRODUCTION

A substantial amount of accurate data for
thermodynamic and thermophysical properties of
pure . fluids and their mixtures are always
essential to the design of chemical processes
and the efficient operation and transportation of
fuel gases. Also, such data can be useful in
testing the theoretical models proposed such as

perturbation and variational theories, and
intermolecular potential models..
The important approach to  obtaining
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thermodynamic properties of a fluid has been
via the direct measurements and the equations
of state usually defined by the experimental
determination of the PVT surface of the fluid.
In spite of the great progress in the development
of equations of state for predicting
thermodynamic properties, there still remains
difficulty evaluating constants or parameters
present in the equations of state for some pure
components such as complex, heavy, or newly
designed molecules. When the thermodynamic
properties of such components are not available
or accessible only with difficulty by the direct
measurements, other methods must be
considered.

Like the Joule-Thompson coefficient, refractive
index and dielectric constant, the sound velocity
has been an important clue to different
approaches to understanding thermodynamic
properties of fluids. Any change of stress or
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pressure producing a local change in density or
a local displacement from equilibrium in an
elastic medium can serve as a source of sound.

The science of sound, called acoustics,
endeavors to describe and explain the
phenomena associated with motional

disturbances from equilibrium of elastic media.
Modern acoustics has experienced enormous
development by the invention of transducers
which can precisely control the generation and
detection of sound with respect to frequency
and intensity. The sound propagation taking
place through an elastic medium by means of
wave motion can be related to the equilibrium
value of medium through the principles of
thermodynamicsm.

The sound velocity ¢ at zero-frequency limit
is related to thermodynamic properties by the
following equation.
a1 __»r _ 1 1 (1)

oxs  oxr o xu— a,/C,
where p is the density, V is the molar volume,
M, is the molecular weight, 7 is the ratio of

the 1isobaric and isochoric heat capacities

(C,/C,), and x5, xy, and xy are the
adiabatic, isothermal, and isenthalpic
compressibilities, respectively. These

compressibilities are  defined and related to
thermodynamic properties by
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where @, is the thermal expansion coefficient
(=(aV/aT),/V).

have

Compressibilities xg, xT,

and xy numerous  applications.  For

example, they appear to be very instrumental in
characterizing the behavior of petroleum fluids
during the various production: isothermal within
the reservoir, at the level of chokes where
expansion is isenthalpic, and at the level of the
compressors and turboexpanders where the
process is isentropic to the first order™®. Other
forms of expressions for the sound velocity and

compressibilities are summarized in Appendix 1,
where ¢, and 7, are the sound velocity and

heat capacity ratio at the ideal gas state, and p,
and y, are the thermal pressure coefficients at
constant volume (= (dP/dT),) and along the
saturation curve (=(dP/dT),), and Z is the

compressibility factor (=PV/RT).

The physical theory of sound waves deals
with systematic motions of material medium
relative to an equilibrium state, thus comprises
the vibrational aspects of elasticity and fluid
dynamics. There are two types of elastic waves:
(1) longitudinal wave where particles move in
the direction of propagation. (2) shear (traverse)
wave where the displacement of the particies of
the medium is perpendicular to the direction of
propagation of the wave. A longitudinal sound
wave is mainly attenuated by two properties of
the medium: (1) classical absorption( a,) by
viscosity and heat conduction. (2) molecular
absorption( @,,) by molecular absorption and

dispersion. The longitudinal motion of sound
wave causes the collisions of molecules, which
often result in rotational and vibrational motions
of molecules. Each of absorption processes is
characterized by a relaxation time, which
measures the amount of time for the particular
process to be completed to some degree. The
sound velocity, thus, depends on the relative
magnitude of the angular frequency o (= 2zf)
of the sound wave and relaxation time. When
the angular frequency is large compared with
1/z, the sound velocity becomes higher than
that calculated from egn ¥

As the attenuation data provides some direct
information about dynamic behavior, one can
know a lot about the mechanism involved from
its dependency on frequency and temperature.
On the other hand, the sound absorption and
dispersion caused by the presence of viscosity
and heat conduction can be related to
thermophysical properties such as viscosity,
conductivity, and surface tension.

In monoatomic gases and liquids, the sound
attenuation can be explained due to shear and
bulk viscosities and heat conduction. When the
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dispersion to classical attenuation is assumed to
be negligible for such fluids, the absorption

coefficients @, and @;, due to shear viscosity

and thermal conduction, respectively, are given
by

871'2 ”sfz
N are 5)
Aty — 2ﬂ2k —31 f2 (6)
prCyc

where k is the thermal conductivity and 7 is

the shear viscosity. Under another assumption
that the classical absorption is additive, the
classical absorption becomes

ac1=%?"§ %vd—(%m]fz 7
on the other hand, show
additional attenuation due to two types of
relaxations: (1) thermal relaxations which have
been demonstrated for gases and nonassociated
liquids and caused by an interchange between
the longitudinal sound wave and the rotational
and internal modes of motion of the -gas or
liquid molecules. (2) structural relaxations which
occur for associated liquids, polymer liquids, and
solids and take place when one part of the
molecule moves from one position to another

Polyatomic liquids,

under the combined effect of the thermal energy.

and sound wave energy[f’]‘

The explicit expression of the sound velocity

as a function of the angular velocity w (=2xf)
. (6]
is
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with X and Y dimensionless quantities defined
as

w(py+42,/3)
= NIV L RUsl O] 9
X 0c?(0) ®
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Y= +an/3)C, 10

where 7, is the volume viscosity.

Since the sound velocity, in general, is a
function of the ultrasonic frequency (f) as
mentioned above, eqn (1) is true only in the
zero—-frequency limit. "However, the measured

sound velocities are known to be independent of
f at sufficiently low frequencies. Even though
such a low-limit frequency range differs from
the components, the velocity measured in the
range of 0.1 to 10 MHz can be taken as the
zero-Trequency limit under the assumption that
the dispersion is shown to be negligiblem.

Since the sound velocity is considered as
purely thermodynamic quantity only when it is
extrapolated to zero frequency and zero
amplitude, it might not attract more attention
than other PVT experiments. Despite that fact,
the experiments on the sound velocity have
several advantages over PVT experiments. The
sound velocity experiments can be conducted
more precisely than other direct thermodynamic
measurements, particularly at extremely high
pressure or in the neighborhood of phase
transitions, and thus the sound velocity data
may be used to check the data by other PVT
measurements.

Also, for the components such as heavy
hydrocarbons in which the critical constants
used in most of equations of state are not
available through the PVT experiments, these
sound velocity data will be very useful to get
the PVT data through thermodynamic relation
between the PVT fundamental properties and
sound Velocity[gl. Another advantage is that the
sound velocity data produce the static and
dynamic properties as well.

This paper summarizes the relations between
the sound velocity and  thermodynamic
properties, which are based on the theoretical
and/or empirical developments, and also reviews
the methods to obtain thermodynamic properties
from the experimental data on sound velocity
for the primary object.

2. RELATIONS BETWEEN SOUND
VELOCITY AND THERMO-DYNAMIC
PROPERTIES

Since the sound velocity is a thermodynamic
property as discussed in the previous chapter, it
can be used as a criterium for theories proposed
to predict thermodynamic properties, according
to how well one theory predicts the sound
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velocity.

Another important characteristic of the study
on the sound velocity is that the information on
the structure of fluid can be acquired. Several
theories, proposed primarily from molecular
basis to explain the state of liquid, will be
reviewed in this chapter. It will be discussed
later how several semi-empirical and empirical
equations of state predict the sound velocity
well.

2.1. Sound velocity in terms of the
intermolecular potential energy and molecular
distribution functions

The canonical partition function Q is related
to the Helmholtz free energy A by

A=—kgTInQ (1)
where kg is the Boltzmann constant. The
partition function is factorized into a product of
internal (Qin) and external (Qex) parts as
follows.

Q =QextQint (12)
where

Qi = (@ aya)™ (13)

Qe =4"7Q,

h2
where A= m (14)

In eqn (13), q, qv, and g are the molecular
translational, vibrational, and rotational partition
functions, respectively, N is the number of
molecules in the volume V, and Q. is the
configurational partition function which is related
to the configurational integral Zn by

Qe=R7Zx(V, D)
where
Zn(V,T)= [ exp(— AU)dpnday 15)

in which py and gy denote all the momenta and
coordinates as usual.

With the assumption of the pairwise
additivity, the pressure and internal energy from
standard statistical thermodynamics are given
by

: al
P =P‘d+kBT(———;l\8°)
) TN (16)
= kaBT——%ifO u’ (r)g(r)4rr’dr
and
- ol
U =U‘d+kBT2(—~;,19°)
\ NV an
_rqid, PNV ® 2
=U"+ 9 fo u(r)g(r)dnr-dr
where py is the number density and g(r) is the
radial distribution function whose physical

meaning is the probability of finding a molecule
at r if there is a molecule at the origin. Also,
the isothermal compressibility is derived in
terms of g(r) without assuming the pairwise
additivity of the intermolecular potential
function.

__1 71 * _ 2
*1= 90T | on +j; [g(r)—1)4nr dr] (18)

With the above information, the sound velocity
using egqn (A4) in Appendix 1 can be
represented by intermolecular pair potential
energy and radial distribution functions, and
their derivatives as follows
onksT

1+pr0 [g(r)— 1M nrédr

2
aoN it ’ ag 3
6k Jo u’ (r) ( 3T )V47rr dr)

Cld+ (0% V/2) fomu(r)(—g,‘%- )V47rr2dr

(19)
For the ideal gas where g(r)=1 and u(r)=0, the

RHS of egn (19) becomes equal to yRT/M,,

which is also derived directly from egn (1).
Eaqn (19), however, cannot be used to produce
the exact expressions for more realistic models
because it is impossible to get the analytical
forms of g(r) and its temperature derivative for
those models.

There are few theories for more realistic
models, if ever, where the sound velocity is
expressed in terms of the intermolecular
potential and radial distribution functions. Even
though the application is restricted to
viscoelastic fluids, Rao and Gupta [9], through

c2=-1—
o
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the use of those functions, calculated the sound
velocity for several viscoelastic fluids - taking
advantage of some results on. hydrodynamics
and elasticity of materials, and their statistical
mechanical derivations. The classical theory of
elasticity and hydrodynamics classifies
deformable substances into the idealized
categories of the perfect elastic solids and the
perfect viscous fluids according to their
responses to the application of a stress. In an
isotropic solid, a longitudinal wave propagating
along the [100] direction of a cubic crystal, the
longitudinal sound velocity ¢ in that direction
is related to the second-order elastic constant
Ciu1 by the expression[lo].

2_ Cu
ci= P (20)
When a mechanical force is applied suddenly to
a fluid, the fluid responds elastically at first,
just as if it were a solid body. The initial
response may be described by two quantities,
the high-frequency limit of the shear modulus
G, and the bulk modulus Ko

Assuming egn (20) is valid for the
longitudinal sound velocity in the long
wave-length limit, Rao and Gupta evaluated the
sound velocity of molten salts besides the shear
and bulk viscosities, and the high-frequency
limit of the shear modulus ( G.) and the

bulkus ( K.) with the aid of the relations

between the elastic constants and two structural
integrals I; and Iz as:

C11=kaBT(3+’§_I1+%IZ) (21)
where I and I were defined by Schofield™! as
follows:

I,= T f f (r)—ugl47rr ' (22)

__bn 2 du(r)
I= TkaT Jo | g(r) 4rr’d (23)

From the definition of the structure function in
the long-wave limit, S(0)'¥ and the relation
between S(0) and I; and Iy, it is known by

SO=1=, @) " 5B ATLe

where ¢(0) is the Fourier transformation of the

known direct correlation function c(r). With the
help of (o), that is, g(r) at r=g, the integral
Ii for a particular potential can be evaluated.
Once the two integrals in eqgns (22) and (23)
are evaluated for a given potential, the sound
velocity can be easily calculated. Using the
hard sphere potential, Rao and Gupta calculated
the sound velocity for molten salts and their
results were in good agreement with the
experimental data.

It should be noted , however, that when
g(r)=1 and u(r)=0 are inserted in egns (22) and
(23), the sound velocity expression for the ideal

gas, ¢’=9RT/M,, can not be obtained from

eqns (20) and (21). To allow quantitative
theoretical treatment of viscoelastic behavior for
simple liquids, the viscosity of liquids must be
greater than 107 Ns/m® (10cP)“.

The several theories, which approximate to
evaluate the partition function in eqn (11) and
make use of the molecular collision parameters,
or combine the molecular-based theories with
the empirical relations, were developed. It will
be used as a criterium for those theories

proposed according to how well one theory
predicts the sound velocity, for the sound
velocity is also related to thermodynamic

properties,
2.2. Approximation models

Several models based on molecular level were
proposed to predict sound velocity from the
molecular parameters. A very simple “free
volume” model, based on a regular Ilattice
structure composed of rigid spheres having their
diameters 0 with an intermolecular distance d,
was developed by Kincaid and Eyring[m. The
free volume V: is defined as the volume
available to the center of a molecule in its cell.
Assuming the sound wave is transmitted with
an infinite velocity in case of molecular collision
and with the same velocity as in the ideal gas
in the one-dimensional free space, the ratio (c*)
of the actual sound velocity in the liquid to the
ideal gas velocity is given by



* [ A% 173 1
¢ ‘"cj‘(vf) T 1-d/d

1
1=(/vH”
(25)
where V* (=V/N.d®) is the dimensionless

volume and ¢ is a constant which depends on
the particular lattice considered. For simple
cubic lattices ¢ is 1, and for face-centered cubic

and hexagonal close-packed lattices ¢ is V2. As
eqn (25) implies, the temperature effect on c* at
constant density is not taken into account, and
the sound velocities calculated eqn (25) were
found to be overestimated™.

Substituting the thermodynamic relations of
P=—(3A/dV)y and S=—(dA/dT)y, into

eqn (A4) (see Appendix 1), the sound velocity
can be expressed in terms of the Helmholtz free
energy A as follows:!

e VZ( azA) [( d2A )( azA)
My \ aT? Jyl\ aV2 )\ oT? (26)

-(F5)]
ANAY

Since the Helmholtz free energy is related to
the partition function, the sound velocity can be
calculated from determination of the partition
function, which makes the sound velocity serve
as a thermodynamic quantity used to test
various models of fluids. The evaluation of the
free energy expression for more realistic models
of the liquid state is difficult and thus the
determinations of the sound velocity become
much more complicated. Here, several simple
models for which the Helmholtz free energy can
be easily determined are reviewed.

One of the simplest models is the simple cell
theory“sl. The partition function Q is
approximated using the free volume V¢ as

Q=V¢§

where V=

AxE 13133
3N [v V,”] 27

where the constant ¢’ also depends on the
lattice of interest and V, is the volume
corresponding to the closed packing for a given
lattice structure. Substituting eqn (27) into eqn
(11) gives

3N
A —NkBT In Ax é,,

—3NkpTIn[ VY3 — V3]

(28)

From eqns (26) and (28) the corresponding
sound velocity becomes

2 _RT 1

T My [1-(V, /)P
Modifying the above model, the “smearing”
approximation was proposed“ﬁ]. In the smearing
approximation where the neighbors of a
molecule are uniformly smeared on a sphere, the
molar free energy A is given bym]

Ae — 3NksT In 27rr;1112<BT

2
3N
+ NkgT lnm (30)
~3NkgTIn (V3 - V3
Substituting egn (30) into eqn (26) gives

c'= 11\{43 1—- (Vlo/V)"3 ﬁ%"%(%)m]

(31)

Van Dael and Van Itterbeek™ also discussed
results obtained from the above theories and
made comparisons with experimental data.

Eyring et al™® calculated the sound velocity
by making use of the “significant liquid
structure” theory that has been believed to be
quite successful in evaluating thermodynamic
properties of liquids. According to the significant
structure theory, the partition function of liquids

is expressed as follows
N(V,/V)Q N(V-V)/V

Q1=Qs g (32)

where Qs and Qg are the partition functions for
the solid-like degree of freedom and the
gas-like degree of freedom, and V and Vs are
the molar volumes of the liquid and solid,
respectively. With the Helmholtz free energy
from egns (11) and (32) determined, a set of P,
V), and V; were determined by the slope of the
common tangent of the Helmholtz free energy at
V) and V., and thus the sound velocity was
evaluated. The significant structure theory was
applied to predict the sound velocities for Ar,
Kr, Xe and TiCls, and provided good agreement
with experimental sound velocities>™.  The
significant structure theory, however, has been
critic[iz?]ed due to the large number of parameters
used .

c (29)




There are also two important theories based
on the molecular collision parameters that are
capable of calculating sound velocity. Making
use of the concept "intermolecular free length”,
Jacobsonm] proposed a method to calculate
thermophysical properties. It is assumed the
molecules in a liquid have the closest packing
at T=0 °K with the molar volume of V, and the
liquid is expanded as a whole through molecular
oscillations without expansion of molecules
themselves as temperature increases. Under that
assumptions, the total surface area of all
molecules per mole, designated as Y

(= %/ 362NV?% ), is not changed and the

increase in volume is equal to the available
volume defined as

V,=Vr—V, (33)
where Vr and V, are the molar volumes at T°K
and 0°K, respectively. The intermolecular free
length Lt between the surfaces of the molecules
can be obtained from

L= 2¥ : (34)
From the experimental data on the isentric
compressibility for 54 non-associating liquids, it
was found

where the temperature-dependent constants k
and p are 2.082 and 10" at 20°C.

Substituting eqn (35) into egn (1) produces

= b =T 36)
LYo = Lo

where K is another temperature dependent

constant.

The other one, the collision factor theory, was
proposed by Schaaffs®. From the experimental
results on sound velocity for organic liquids and

imposing  several  approximations, Schaaffs
derived

B
c=cuSY,=Co 32 37)

where S is the collision factor, B is the actual
volume of the molecule per mole (=47rr3N Al3),
Y: is the space-filling factor (=B/V), and co is

taken as 1600 m/sec. The free length theory
and collision factor theory would rather be used

to calculate the sound velocities of mixtures
from those of pure fluids and to evaluate the
molecular parameters such as free length,
effective molecular radius, etc., as will be
discussed later.

Next, we turn to another approach that
combines the molecular-based theory and
empirical relation. Florym derived the following

reduced equation of state using the
characteristic values, V°, T°, and P°
hy ¥ *1/3
PY _ ¥ L (38)

T Vv'%B-1 vT
where P*, V*, and T* are the reduced pressure,
volume, and temperature, respectively. According

to Flory, the characteristic pressure is
determined by

P°=y,TV? (39)
At zero pressure, eqn (38) becomes

VIP—]

—VW =T (40)

Differentiating eqn (40) with respect to T* and
using the definition of the thermal expansion

coefficient @, at P=0 give

s _ et
v L 3(1+apT*) “n
A reduced form of equation for surface tension
based on the Flory’s equation was derived by
Prigogine and Saragams] as follows:
*1/3 *1/3

0_*(V*)=MV*—5/3_ VV*Q—]. In VV*I/;_(_)iS

(42)
where M is the fraction of nearest neighbors
which a molecule loses on moving from the
bulk of the liquid to the surface and its most
suitable value is found to be 0.29. Therefore,
the surface tension of liquids in terms of the
Flory theory may be represented by

o= 00" (V") (43)
where the characteristic surface tension ¢° was
shown to be represented by the characteristic
values T° and P° as follows™:

= kll3/3P02/3Tol/3 (44)
Auerbach®”  derived the following empirical

equation relating surface tension (in dyne/cm) to
sound velocity (in m/sec) and density (in
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g/cm?).
2/3
2 o)
=|———"—7" 45
¢ [6.3><10 “p] o)
Substituting eqn (43) along with egns (42) and
(44) into egn (45) gives

3 =[ 6.3><610"4p ]m

k}13/3P02/3T°1/3 2/3
- 6.3><10"4p]
TR At U AL . e
X[MV 53 _ V*Z In V'1/3~1
(46)

After calculating the characteristic values of P°
V° and T° from eqns (39) through (41) together
with experimental data, the sound velocities for
noble gases (argon, krypton, and xenon) and
nitrogen were computed by way of the surface
tension. While  the agreement between
experimental and calculated sound velocities for
noble gases was good (within 5 %), the results
on nitrogen were not. Using the Auerbach’s
relation in eqn (45) and the surface tension
data, Kannappau and Rajendranm] also
calculated the sound velocities for fluorocarbons.

Thus far we have summarized the theories
proposed on the sound velocity. The sound
velocity expressions can be derived from a
given equation of state because of its being
directly related to the PVT relations. An
emphasis in this chapter, however, has been
placed on the nature that the sound velocity
rather serves as an autonomous datum in direct
relation to a fluid model proposed.

3. CALCULATIONS OF SOUND
VELOCITY FROM EQUATIONS OF
STATE

During the past several decades, since van
der Waals proposed an equation of state
representing liquids as well as gases, there have
been enormous progress in developing equations
of state to predict fluids in all phases. Since the
sound velocity is related to thermodynamic
properties, it is worthwhile to observe how well

an equation of state predicts the sound velocity.

Appendix 2 indicates the sound velocity
expressions for various equations of state.
Additional information on the values of the ideal
gas heat capacities Cp (=CwtR) as a function
of T is required to calculate the sound velocity
when an equation of state is given, because Cyo
can not be determined from an equation of
state, which provides the residual heat capacity
properties, (Cv-Cyo) and (Cp—Cpo) With Cpo
determined, C, and Cy can be calculated from
the following equations:

2
Cv=(Cpo-R)—Tf0P#( aP)dp 47

oT?
2
C, =Cv+%(%)p/(%)l" (48)
2
-~ 1(F) /),

The performance of equations of state to
predict the sound velocity has been tested. The
Carnahan-Starling equation of state™ for the
hard sphere model was used to calculate the
sound velocity for benzene, toluene, and
chloroform™.  For Cp or Cy required to evaluate
y as shown in Appendix 1, the experimental
heat capacity data were used, and the hard
sphere diameter d needed to evaluate 7 was
determined from the following empirical relation:

V o 1/4
7.210><1019( Tc)

where 0 and V are the surface tension and

d5/2=

(49)

molar volume, respectively. The calculated
results were in good agreement with the
experimental sound velocities, which
demonstrated the validity of the

Carnahan-Starling equation of state.

Using the Socave-Redlich-Kwong equation of
state, Kouremonos and Antonopoulosm]
calculated the values of ¢/c, for air over a wide
range of temperature and pressure and plotted
the generalized compressibility chart. Compared
with the results of other thermodynamic
properties, the calculated results of c/c, appeared
to be underestimated. That may be partly due
to their omission of the term, ¥/7, in the

expression for the sound velocity.



B2 calculated 7/7, and c/co

of argon, carbon dioxide and nitrogen in the gas
state from three different equations of state
(van der Waals, virial, Benedict-Webb~Rubin) to
evaluate these equations. The BWR equation of
state  provided a  better prediction of
compressibility than other equations as expected
because of the BWR equation of state being an
empirical equation to fit thermodynamic data
like density, pressure and thus compressibility.
However, the predicted values of y/y, and c/c

Sharif and Groves

by the BWR equation of state, which are related
to the slope of thermodynamic properties, were
found to be less accurate than those by the
virial equation of state.

The sound velocities for hydrocarbons of up
to n-Cis and a few of aromatic compounds were
calculated from six different equations of state
and corresponding states relation to compare the
results with the experimental data by Ye et
al® Starting from each P-T set for which the
experimental velocity is contained, an equation
of state was solved numerically for V or p, and
and C,

evaluated. They got the better results with the
Lee-Kesler correlation than with several cubic
and non-cubic equations of state.

Substitution of the virial form of equation of
state into eqn (1) also gives eqns (Al3) through
(A21) in Appendix 2 relating the virial
coefficients to the sound Velocity[m. In the
equations, B, C and D ( or B, C’' and D’) are
the second, third, and forth virial coefficients,
and Az, A3z and As in eqn (Al4) (or Ay, As
and A4" in eqn (A19) when expressed in powers
of pressure) are called the second, third, and
forth acoustic virial coefficients. Also, ¥, is the

ratio of the heat capacities at the pressure in
the ideal gas state.

then a,, xr, needed for c were

Lestz™ calculated the sound velocities of Nz,

Ar, and Kr in the gas state from the virial
equation of state based on the Lennard-Jones
potential. The reduced form of the sound
velocity equation truncated after the second
acoustic virial coefficient becomes

2 ZRT K P*] (50)

ci= M, [l+ 7T

where

* *_ *2 N
z=1+%—P*+—(CT—*PlP*2 (51)
K*= [2B*+2(y0—1)T*%,%7

: (52)

(70—1) *9 d2B*

+ Yo T dT*?

With the values for B
respective to T from the well~ tabulated
results™® and the Lennard-Jones parameters, the
sound velocities for argon and nitrogen were
calculated. The results were in good agreement
with the experimental data.

and its derivative with

4. METHODS TO DERIVE
THERMODYNAMIC PROPERTIES
FROM THE SOUND VELOCITY DATA

Since the sound velocity has been known to
be measured more accurately than any other
thermodynamic quantity, it can be used not only
to check PVT data independently, but also to
deduce the PVT relations when it is difficult to
measure those by the direct methods.

The methods to obtain PVT relations from
the sound velocity data can be largely grouped
into the empirical and theoretical methods. The
methods based on the theoretical relations have
been applied to gases at moderate pressures for
evaluating the virial coefficients, and to fluids at
high pressures for extracting useful information
on the PVT relations and their temperature and
pressure dependences.

4.1. Based on the empirical relations

Rao™ made an empirical relation between the
derivative of sound velocity with respective to
temperature and thermal expansion coefficient
from the experimental sound velocity data.

<(Fr),=w (5r),

c\ aT V\ T
with ki = 3.0 (53)
or after integration,

- where R’ is the Rao’s constant and it is also
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called the molar velocity. It was found that R’
can not be a constant for all liquids and not
even for a liquid over its whole range of
temperature and pressure[%].

Similar types of empirical relations for
adiabatic compressibility[%] and the pressure
derivative[m of sound velocity were proposed as

follows:

(%), b ),

xr \ oT V\ 4T

with k2 = 1/7 (55)
1/ 0cy __, 1 (V'
c(aP)T kBV(aP)T

with ks = 3.0 (56)

Although the three relations mentioned above
have empirical origins, not confirmed by any
convincing theoretical argument, they are
sometimes supposed to be criteria for the
normal behavior of a fluid™®., The Rao’s rule
has also been used to calculate the sound
velocity of mixture.

Another type of approach is to take advantage

of the corresponding states principle that
provides a suitable method to get the
generalized correlations and to predict

thermodynamic properties of fluids from the
correlations. Regardless of the abundant data on
the experimental sound velocity, there have not
been many attempts to correlate these data in
the form of simple algebraic equations for
thermodynamic analysis.

De Boer™ defined the reduced variables Px
JV* and T* for fluids with the Lennard-Jones

intermolecular potential to make a simple
correlations of the sound velocity using the
following characteristic values:

S
Po—?
V,=Naud’ (57)

__£€

T,= kg
and the corresponding characteristic sound
velocity becomes

PV Nae
le=—ore = A (58)

M, M,,
Then, the reduced sound velocity from eqn (1),
which is independent of the molecular weight,

can be taken as

*2 *2 a]?l'l
=—yV | = 59
V). )
Another reduced expression of the sound

velocity is the ratio of the actual sound velocity
to the ideal gas value defined by

w_ ¢

7RT/M,,

The advantage of eqn (60) over eqn (59) is that
all pressure or density effects can be plotted on
a scale where the trivial ideal gas temperature
effect is eliminated. The corresponding state
treatments on gases and liquids for several pure
fluids using egns (59) and (60) were discussed
in details by Van Dael and Van Itterbeek! ™. 1t
was mentioned that the corresponding states
principle using the above definitions of
characteristic values could be successfully
applied only to simple fluids.

Another form of  definition on the
characteristic temperature T., to apply the
corresponding states principle to a bit more
complex molecules, was proposed by
Srivinivasan and Krishna Murthy[39] utilizing the
saturated liquid density data as follows

c (60)

9(Tes) _ _
aT - 0 at T = To (61)
In eqn (61), T, can be defined as the

temperature where the product Te, goes to a
maximum for liquids. Rearranging egn (61)
shows that the thermal expansion coefficient a,
for the saturated liquid at T, is the reciprocal of
T,, that is,

2 FE) @

The sound velocity in the ideal gas state at T,
is used to define the corresponding reduced
sound velocity as usual.

* C

c =C—o (63)
where
c,=V RT /M, (64)

Srivinivasan™® applied the above definition of T,

to obtain the correlations for several cryogenic
liguids and refrigerants. It was shown that
cryogenic liquids and ammonia fall into a
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different category from the hydrocarbons and
refrigerants, and the correlations fit the
experimental data with an absolute average
error of about 5%.

In spite of the fact that the sound velocity
can be considered a thermodynamic property at
low frequency, there has not been any attempt
to introduce another parameter to explain the
deviations from simple fluids such as the
Pitzer's acentric factor, polar parameters, and
shape factors. As expected, the corresponding
states principle without such parameters can not
transform the sound velocity into one form of
expression with the dimensionless variables
defined above.

42. Gas state

The sound velocity data
important role in characterizing the virial
coefficients and the ideal gas reference state
heat capacities with greater precision than the
direct PVT measurements. It is difficult and
tedious to determine the thermodynamic
properties as the ideal reference state
experimentally. As mentioned earlier, the ideal
gas heat capacity data are also required to
calculate the sound velocity with an equation of
state.

The results are analyzed in terms of an
expansion of the sound velocity in powers of
pressure P,

c?= 2CP' (65)

where Ci's are the constants to be fitted. From
eqns (65) and (Al9) in Appendix 2, the ideal

gas heat capacities, the second ( A,) and third

( Ay) acoustic virial coefficients are determined

from

=T = I=RIC; (66)
A= g‘ = ylﬁsz C, (67)
A= g2 = XQWT Cy | (68)

The regression of the results on Cp as a
function of temperature can be represented by

- researchers

also plays - an-

a; . a; ag
Cm=ao+——T, or Cpo=ao+T+"T—2',
) 2
or Cp -I-—T +a,T+asT (69)

The above procedure was attempted by many
1

442844 The values of Cpo obtained

from the sound velocity data were in excellent

agreement with the flow~calorimetric
measurements[45].
Once A, is determined, the second virial

coefficient can be calculated from the following
second order ordinary differential equation

(70 1)* T2 d’B

2B + 2( 7o l)T 2
%o dT* (70)

= AZRT = Az
and third virial coefficient can be also computed
similarly by

270_lc+7(2) leC

Yo 2 %o —dT (71)
(YO—]-) 2 d2C —_—
+ 27, T dT? =G

where G is independent of C and is given by
G =(A;+A;RT)RT—[B+(270—1)T%

2 (70_1)

2
DT dTZ] Yo

+(7,—

. (72)

As shown in eqns (70) and (71), however,
determination of the virial coefficients from the
sound velocity measurements is not as
straightforward as for the Cp. There have been
many attempts to calculate the virial coefficients
from eqn (70) after regression of the sound
velocity - data. At low pressure P, the sound
velocity expression truncated after B(T) can be
rearranged as

c —c[ -i-ﬁll ] (73)
where
f(T) = AZZ(T)
2
=B+(7- DT (7"27 D" e oo
(74)
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Eqn (70) or (74) is the second order ordinary
differential equation and it is evident that two
boundary  or initial conditions on B(T) are
necessary to solve eqn (74) for the complete
solution. The term f(T) in eqn (74), however, is
only known numerically at a limited number of
the experimental f(T) data and hence eqn (74)
should be evaluated by numerical integration
after the interpolation of f(T).

Instead of integrating eqn (74) numerically,
early researchers assumed that B(T) in certain
T intervals is adequately represented by the
function form

b
B(T)=b1+—T~2— (75)
This, in turn, means that f(T) is given by
_ 1\b2
f(T)—b1+( 70) = (76)

By plotting f(T) from the sound velocity data
as a function of 1/T , the coefficients by and be
were determined and thus the second virial
coefficient B(T) was evaluated™““7_ Also,
Ewing and coworkers™ obtained B(T) based on
the square well intermolecular potential.

B(T)=b1+bzexp(b3/T) (77)
The three adjustable  parameters were
determined to fit the values of A’ and ¥,

Applying eqn (77) to several components'?*

they obtained accurate predictions for B(T).
Provided a more general functional form for
B(T) in a finite series of 1/T is assumed as

B, (T)=2>b,T" (78)

Then the coefficients b, can be determined by a
least-square fit to the experimental values of
the corresponding functional form for f(T).
Therefore, this method in which B(T) has
certain assumed functional forms, is called the
"curve—fitting method” in contrast to the
following method to try to get the analytical
solution of egn (70) or (74).

With the function G in egn (72) evaluated
using the B(T) and its temperature derivatives.
and the third acoustic virial coefficient As’, the
third virial coefficient A3z can be determined. It
was concluded that even though the third virial
coefficients calculated by this method show

large discrepancies, these are not unreasonable
in view of the experimental difficulties in the
direct measurements'®.

There may have been several approaches to
get the second virial coefficient solving eqn (74)
without recourse to an assumed functional form
on B(T). Criticizing the curve-fitting method for
not making explicit use of the solution of the
homogeneous equation part of eqn (74) and
using the fact that the numerical values for f(T)
at certain T from egn (75) values are known,
Bruch® solved eqn (74) without assuming a
functional form of B(T) as in the curve-fitting
methods to derive the following formal solution

B(T) = Bh+ Bp

- xlT(zﬂ COS[(_%_)”ZH,-T;HQ(T)] (79)

-l s (Fpn s

where Bn and B, are the homogeneous and
particular solutions, respectively, and x; and %

are the integration constants depending on the
choice of an arbitrary constant representing the
integration range in eqn (79). Since f(T) is
only known numerically at a limited number of
points, the integral in egn (79) can be evaluated
by numerical integration after taking a value of

7 and regressing f(T) from a finite number of
the experimental f(T) data. The results obtained
by this procedure for gases helium (‘He) agreed
within 10 % with the values from the
isothermal measurements by Keller™.

Inserting eqn (75), which was often employed
for the curve-fitting method, into the integral of
eqn (79), Boyd and Mountain™ derived the
semi-empirically analytical particular solution.

5.+~ ren] ) "0 Tx0)
(80)

where |

2(0)= tan _1[——(%—)”2%%1]

They also pointed out that choosing a form for
B(T) specifies an approximate differential
equation for which the chosen form is the
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complete solution and that Bruch’s contention
that the curve-fitting method chooses the
particular integral without considering the
homogeneous solution of eqn (74) is not correct.
Another method to soive eqn (74) was done
by Ewing et a].[m, who utilized an iterative data
inversion formula to obtain the intermolecular
pair potential as well as the second virial
coefficient,  simultaneously. Provided the
homogeneous solution Bn of eqn (74) can be
expressed in terms of linear combination of the
two independent solutions Bw and B, the
complete solution is
B=C1Bh1+C2Bh2+Bp (81)
where C, and C; are constants to determined
from the initial conditions on B and dB/dT.
Also, the 'well-width’ function 4(t) is defined
as
A =ri(t)—rit) (82)
where t=(u+e)/e , and rg and 1. are the
intermolecular separations on the inner and

outer branches of u(r). Then, taking the Laplace
transform of eqn (81) gives

ga(s) =LJ4(t) = [ A exp (— st)dt

= [ 27N A3e—xp(s)_](Bp +C By +CBy)
=gp(s)+ Cig11(s) + Cgp (s)
and BC's are At=0)=0
At=o0)=( (83)

where s =¢/kT and Na is the Avogadro’s
constant. The expansion of the Pade
approximant on the second acoustic virial
coefficient in a series of positive and negative
powers of T was employed to perform a
numerical integration more accurately instead of
the simple interpolation, that is,

A=, 3a,10 8
A2‘0_2b0 n=

where b, = 22N A02/3 at the collision diameter

0, and A’y was determined from an
approximate potential function with 0, and an
interpolation formula for y,. Both B(T) and u(r)

were determined by this inversion method of

the second acoustic virial coefficient under the
only assumption that ulr) is spherically
symmetrical. The results on u(r) was found to
be almost identical to that obtained by inversion
of the true virial coefficients. It was mentioned,
however, that the results on the second acoustic
virial coefficient over a wide range of
temperature were required,

Recently, Riazi and Mansoori®™ developed a
method to solve eqn (74) for B(T) analytically
and to obtain the parameters present in the
equation of state using the sound velocity data.
From the definition of the sound velocity  in
eqn (1), the sound velocity can be expressed in
the general form of
c=c(S,V) (85)
Differentiating eqn (1) with respect to S at
constant V gives

9cde =— &’i[ gs( 35 )S]ds (86)

Substituting the thermodynamic relations of
dS=(8S/aT)dT and

(0P/3S)y=—(8T/dV)g into eqn (88) and

making use of the mathematical identity of
derivatives yield

Vi1_9 (6T as
2ede = M, [ ov ( av )s]s(ﬁ)vd’r (87)
On integration of eqn (87) with another
mathematical identity on (8T/dV)s , eqn (88)
is derived.

2 oo 2

2 ch= l\\gw A ( SVTQ )S( 25 )Vd’l‘ (83)
where the subscript 'hs’ denotes for the hard
sphere property. Eqn (88) is a mathematical
relationship for the following equation of state
in the form of the sound velocity:
c=c(T,V) (89)
Egn (89) forms a basis for use of the sound
velocity in obtaining PVT data. It has also
been shown by Alem and Mansoori®™ that the
entropy of a hard sphere fluid becomes equal to
that of a real fluid. For a hard sphere fluid the
residual entropy is given by
(S—So)hs=“inlﬁt_g_7;)3_z7zl (90)

The residual entropy for ideal gas is equal to
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s—sf=LH(%$jv—{}kv (91)

Substituting the virial equation of state
truncated after the third virial coefficient and its
equation for hard sphere fluids into egn (91),
and making use of the equality of real fluids
and hard sphere, the following ordinary
differential equations for the second and third
virial coefficients can be obtained.

Tg—¥+B=Bhs 92)
T%%—+c=chs (93)

where Bns and Cps are the second and third
virial coefficients for the hard sphere equation
of state. Since Bns and Cus are known for the
Carnahan-Starling equation of state, the
ordinary differential equations of egns (92) and
(93) were solved to give

B(T) =q, 35+ gg— (94)

1
C(T)=q1*h}rl+n§—“n (95)

The unknown parameters p1 and i in eqns (94)
and (95), which are integration constants, were
determined from the sound velocity data. The
sound velocity expression for the virial equation
of state becomes

c2=—1\7%(1+273+3,—%) (96)
With C, and Cv for y in eqn (96) expressed in
terms of B and C, the parameter p1 and i were
determined from the experimental sound velocity
data. It might be interesting to note that the
form of B(T) has a term of In T, which has
not been included in the curve-fitting method
such as eqns (77) and (78).

B(T) determined from eqn (94) for methane
were in  excellent agreement with the
experimental data™. While Dymond and Smith
data produced the compressibility factor (Z)
within around 0.8 % of the experimental values
for more than 200 data points, B(T) from eqn
(94) gave an average deviation of 0.4 %. By the
similar procedure the Lennard-Jones parameters

0 and g, and the parameters a and b in the
van der Waals equation of state were also

evaluated. Form the  results on the
compressibility factor (Z) obtained from the
Lennard-Jones parameters, and parameters a
and b in the van der Waals equation of state, it
was concluded that the PVT relations could be
extracted from the sound velocity data

successfully.
4.3. Fluids at high pressures

The values of heat capacities over a wide
range of pressure and temperature can be used
to check the temperature derivatives of other
thermodynamic properties and to test molecular
theories of the behavior of thermodynamic
properties. It is now known that errors of 1 or
2 parts per thousand in the PVT surface can
lead to errors of 5 or 10 % in the first
derivatives of the equation of state. At high
pressures, where the pressure and temperature
dependences of these derivatives are small, this
can lead to larger errors, or sometimes even the
wrong algebraic sign in the second derivatives
used to calculate the pressure and volume
dependence of heat capacities[ss].

Since the sound velocity measurements do not
have any particular problem and can be done
easily even at high pressures, where direct
measurements are sometimes difficult, the sound
velocity data can provide a check on the
accuracy and precision of PVT data. The
combination of sound velocity and PVT data
can furnish a method to evaluate heat capacities
without recourses to heat.

There are two groups of approaches to
obtaining the thermodynamic properties of fluids
at high pressures from the sound velocity data:
(1) to derive the compressibilities and heat
capacities directly with combination of the sound
velocity and PVT data. (2) to extract PVT data
(P-T isochores or P-r isotherms) from the
sound velocity and other data at reference state
by the successive integration procedures.

In the first method the adiabatic

compressibility x5 can be determined from egn

(1) once the sound velocity is measured as
functions of density and temperature. The
principal use of xg is to calculate x7 and it
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may be done through the following
‘thermodynamic identity[wi
o= 2Co+TValas+ xs7s) o7

CG_—TVYG(QU-*_ xS?’a)
when C,, a, as, and y, along the saturation
curve are determined experimentally. After xr

is evaluated, the values of 7,, @, and 7 can be

calculated from the following relations in
conjunction with PVT data.
ap=a,tx17, (98)
Cv=C,—TVayy, (100)
C,=C,—TVa,y, (101)

The calculated results on (dp/dP)r and heat
capacities for saturated liquid oxygen, nitrogen,
and argon, except hydrogen, agreed well with
the experimental data™. In order to calculate Xs

and 7y at elevated pressures, however,
knowledge of density as a function of pressure
must be given. This was obtained by using the
following form of the Tait equation to describe

the isothermal changes in the molar volume™
OV ___ b
(%)= b, + P (102)
where bi and bz are temperature dependent
constants. Integrating eqn (102) yields
by+ P '
V,—~V=b;1In b, + P, (103)

Constants b1 and by were determined from two
molar volumes at saturated vapor pressure P,
and at some higher pressure P. With V
determined, then, the adiabatic compressibility
and heat capacities were evaluated by

Xg = M\‘,/VCZ (104)
.
C,=— YV (105)
XT— X5
CEXS
Cy= (106)

Xt
This calculation method was applied to high

pressure data in oxygen, nitrogen gnd hydrogen
by Van Itterbeek and Van Dael™. Theon et

al.®" used eqns (104) through (106) to calculate
the thermodynamic properties of argon at
pressures up to 500 atm and Streett™ extended
these calculations for liquid argon up to its
melting curve (Pmax = 3000 atm) at temperatures
between 90 and 150 K.

When the sound velocity and all PVT data of
interest are available, eqns (104) through (106)
can be directly used to calculate the isothermal
compressibility and heat capacities[sg'sg’m’sn. When
this procedure was applied to liquid krypton, for
example, the results on C, and C, were accurate
within about 5 % with the experimental values.

From the experimental data of density ( p,)

and pressure ( P,) along the saturation curve,
the sound velocity, and isobaric specific heat
(Cp) instead of C,, the procedure of determining

the values of xt, 7, and Cy was developed by

Blagoi et al.l%?, Starting from the
thermodynamic identity in egn (98), the second
term of the right hand side was considered
negligible in the first run. With the

approximated value of @, in egn (98) and sound

velocity, the heat capacity ratio y was
determined from the following identity.
Ta’c?
y=1+ —Cp—— (107)
P

Then, ¥ was calculated from x5 and 7, and
the calculation of @, in the second run as
carried out from xr and y, By the successive

approximations, the values of @, C,, and 7

were evaluated after the calculated value of a,
converged. This method was carried out over a
limited range of high temperatures for krypton,
xenon, and methane in the liquid state where 7,

and xp are so small that the error caused by

the first approximation in eqn (98) leads to only
less than 2%. The results on C, deviated about
10% from the experimental data.

This technique to utilize the sound velocity
data provides a means of calculating heat
capacities without measuring a quantity of heat.
The results on those calculated from the sound
velocity agreed quite well with those by the
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direct measurements for most components and
were compiled by Rowlinson and Swinton™, It
should also be noticed that the above method
presents real advantage compared with the
relations using the second order derivatives
commonly applied on PVT data, ie.,

aC FiaY

pl [ OV

( = )T T( 7 )P (108)
aCy\ _ ..[ 9%

(5 )= (5,

It was shown that the calculated C, curve had

the general shape as the experimental results
and was in excellent agreement with the
experimental values™. Streett™™ also discussed
that the sound velocity data together with the
PVT relations could predict much better trend
of the variation of Cp, and Cv with a function of
pressure.

Turning to the other approach, Davis and
Gordon™ first developed an exact method by
the stepwise integrations to calculate density
change of Hg under high pressure as a function
of P and T from the sound velocity data. The
pressure dependence of the sound velocity was
fitted to give

c=A+BP +DP? (110)
where A, B, and D are adjustable parameters.
As the first step to represent density as a
function of T and P, the following
thermodynamic identity comes from the
definition of the sound velocity in Appendix 1.

2

Go\ 1, Tay

( 22 )T Tt (111)
They integrated eqn (111) at constant
temperature T with respect to P.

P
o 1
= o(P P
p(P’ T) p( 1T)+ j};o CZ(P) d (112)

P 42
Yp
+pr°deP

where P° is the pressure at the reference state
(1 atm). On integration of egn (112), the
pressure interval AP(=P;-P1) was Kkept small
enough for 1/c(P) in the first integral to be
assumed to vary linearly with pressure, and
was determined to be about 125 bar for this
system by a trial and error method. Provided

x7 is taken to be a polynomial function of
temperature at Py, e, xt= ZanT“, the thermal

expansion coefficient @, in the second integral

can be determined by using the following
identity.

(5), = (57)
P |+ T Jv

With the initial slope of @, vs. P determined

(113)

from eqn (113), @, over the interval 4P was

evaluated from

da
ap(P)=ap(P1)+(?39—)TP‘(P—Pl)
Using eqn (114) and its derivative with the
respect to T, the pressure dependence of C, in

(114)

the second integral was approximated as
follows:
() ——I[(L) 1 q)
JP /v P oT Jp " 7P
~_T[( 02 2
~-%| (5t )pﬁ““p
(0a/dT),,—(3a/dT)p,
+ e (P-P))|
where P < P < P (115)

Integrating eqn (115) to observe 4C,,, it was

found that if © was assumed to be constant

over AP, ACp was small enough to be assumed
constant for the integration over 4P. Only the
integral of a/f, along with eqn (114), therefore,

was considered to compute the density variation
in eqn (112).

Besides evaluating o(P2) from integrating egn
(112) with above information, C, and a, were
determined as a function of T and P» from egns
(114) and (115). Once a, was evaluated, xT was
also calculated as a function of T and P from
eqn (113). The thermodynamic properties such
as o, @, C,, x5, and xy, were obtained by
repetition of the same procedure over AP at
three different temperatures together with the
experimental results on ¢, g, @, and C, at 1

atm as the initial values to be needed for
integration. An analytical repression for P-p
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isotherms was shown to give a better
representation than equations of state available.
The error associated with each of the calculated
values of the thermodynamic properties was
estimated by placing appropriate perturbations
on the input data and recording its effect on the
final results.

A bit simpler method on integration of the

in eqn (112),

calculated directly from successive p-T isobars,

second integral where a, was

was developed by Sun et al® The density ©°

and specific heat C, at the reference state of
0.1 MPa (P°) from the experimental data was
fitted to give

o°=a,+a,;T+a,T? (116)
Co=b,+b;T+b,T?+b,T? (117)
Under the assumption that the isobaric density

at elevated pressures can also be represented by
a second polynomial in T as in eqgn (116),

a=do(P)+d(P)T +dy(P)T?
ap(T)=~—(00/3T),/0
was determined from o-T isobars in egn (118).
The first integral in eqn (112) was evaluated

after fitting the sound velocity data to the
following double polynomial equation:

P—P= 31314, T[c—c ()

where ¢’ is the sound velocity at P° and Ajy's
are the coefficients to be fitted. The first

(118)

at elevated pressures

(119)

integral I=fu dP/c?, then, was expressed in
p

the following form suitable for computer
calculations:
C ke
_ j i—-1 k oyi—k-—1
1= i‘i 2‘ba“T Zfo k+1 )

(120)
% [Ck+1_ (co)k+1]

This technique is simpler than the previous

method by Davis and Gordon in that it dose not

need additional assumptions on 1/c* and @, for
evaluating the first integral in eqn (112) and xr,
respectively. In addition to that, the more
suitable form for the integral I in eqn (120) was

used. By the error analysis composed of
perturbations .on the input data and monitoring

their  effects on the results it was noted that
accurate density data should be available for
obtaining thermodynamic properties from the
sound velocity data. The calculated results on
density for ethanol at pressures of up to 280
MPa were found to show good agreement with
the experimental data within 0.196 of average
deviation. The same method was applied to
toluene and n- heptane[65]

ten Seldam and Biswas™, recently developed
a new computational method of stepwise
construction of P-T isochores starting from one
experimental reference P-p isotherm, sound
velocity data of the gas expressed as a function
of P and T, and the heat capacity data fitted by
the double polynomial expansion of temperature
and density at lower pressures. Those are

[66]

—a+B copiD ippe
o=A+p +CP+or +EP (121)
P= 2 AT c—c" (DY (122)
Cv=cvo+ kgl gKk]Tkp] (123)

where ¢° is the sound velocity at P° = 0.1 MPa
and A, B, C, D, E, m, Ay, and Bj; are adjustable
parameters to fit the experimental data for the
reference P- pisotherm, the sound velocity at
the gas under investigation, and the specific
heat of the gas.

Along with the values of P and (dT/dT),
calculated from egn (122) at the reference
temperature (298.15K) and at a number of
selected densities, ¢ at this pressure P and C,
were evaluated in egns (122) and (123),
respectively. The variation of C, with density
for all densities of study was determined by
integrating the following relation.

(%), 328

oo /1 oT?
~~5[(57), .

_ (9P

(57 )”_m]/"T

At the next temperature T-4T with 4T small

(usually 1 K), the pressures corresponding to
the selected densities were computed from

(124)
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P(T — 4T) =P(T)— (—g%)om

Constructing the P-T isochores from egn (112),

(125)

the P-p isochores can also be developed
simultaneously at temperatures with the
temperature interval 4T without an

interpolation of procedure, and C, and 7 as well

as Cv, were also evaluated by using the
thermodynamic relations:
C,=7C, (126)
y= CZ(_g'}%)T (127)

The average deviation of the density results
for argon up to 1 GPa was be less than 0.1 %
and was found to be within the experimental
uncertainty of the direct measurements. FEgn
(121), however, is not correct for low P as p
blows out when P —0, which makes the
application of this method restricted to high
pressure regions where eqn (121) retains valid.

A computational method of constructing o-T
isobars instead of P-T isochores was recently
developed by the same group[eﬂ. It was needed
to replace eqns (124) and (125) by

(55). - (55), o~ (5F), oo

(128)

p(T+zrr)=p(T)+(—a"—) AT (129)

oT

for evaluating p-T isobars.

We have discussed a series of methods to get
the thermodynamic properties by integrating eqn
(111) successively. In the stepwise integration
methods, however, the gradual accumulation of
errors is inevitable as the successive
integrations proceed.

There was another type of approach to make
use of the form of a secant bulk modulus. By
using the bulk modulus K, which is the
reciprocal of the isothermal compressibility xr,

Fine and Millero™ determined the density and
compressibility of water over the range of 0-100
°C and 0-1000 bar as functions of T and P
from sound velocities. The second degree secant
modulus equation is expressed in the following
fOITang]

1 aP
< = =-5(3)
Xt av T
__PV°
-V
where K, K® and V, V° are the bulk modulus
and specific volumes at applied pressures P and

(130)
=K°+AP+A,P?

0, respectively. The values of K° and V° can
be fitted to give the polynomials in temperature
from the experimental data. Rearranging eqn
(130) gives the following expression for the
specific volume:

vp

= V- .

K°+AP+A,P*
Differentiation of eqn (131) with respect to P
gives

(131)

( aV) _ V°(K°— A,P?
oP /1 (K°+A,P+A,P%?
Eqn (132) is related to the sound velocity by
the following thermodynamic relation
aV) 9 TV
= + 1
( ap T C2 Cp ( 33)

(132)

In eqn (133), @g is calculated by integrating
the thermodynamic relation of eqn (6.56).
P; 42

¢,=Cy-T] (g—,rvz)dp
where Cg is the specific heat at 1 atm. Egns
(132) to (134) were combined to determine A,
and A2 as the polynomial functions of T. The

specific volume was calculated from eqn (131),
and the isothermal compressibility and thermal

(134)

expansion coefficient of water, then, were
determined from
xT=_L( 8?) _ V(K°—A,P%
VVP /r V(K°+AP+A,PH*
(135)
” =_1_<6_V)
P VN aT Jp
=L( F) v") B P(3 V°/oT),
ViV daT Jp V°(K°+A,P+A,PY)
_p 9 (dK°/dT)+P(dA1/dT)+P'2(‘dA2/dT)
V(K°+A,P+A,P%?
(136)



The calculated results for specific volumes by
this approach were in good agreement within
2x107° cma/g with the experimental data. Chen
et al™ attempted the same method with more
reliable data on the sound velocity at 1 atm. It
was noticed that in spite of differences existing
in the various fitting equations of sound
velocity, the effects on the calculated specific
volume were small.

Thus far several leading methods to obtain
thermodynamic  properties from the sound
velocity data by the stepwise integrations have
been reviewed. These techniques provide reliable
information on thermodynamic properties and
their temperature and pressure dependences and
the accuracy of the computed PVT data, in
general, is comparable to those obtained by the
direct measurements. It was concluded that if
the experimental density data at the reference
state is accurate enough to make a smooth
function of temperature over a wide range of
temperature, an accurate equation of state for

liquid can be extracted from the sound velocity
data[64]. .

5. CONCLUDING REMARKS

We have reviewed the relations between
thermodynamic properties and sound velocity,
and the methods to obtain thermodynamic
properties from the sound velocity data. ‘

Along with the complete PVT data, the sound
velocity data can be very instrumental in
checking the PVT data and in obtaining more
accurate information on the temperature and
pressure dependence  of  the important
thermodynamic properties, such as thermal
expansion coefficient, isothermal compressibility,
and heat capacities. The measurement of the
sound velocity also provides the methods to
extract valuable information on thermodynamic
properties which are accessible to direct
measurement only with extreme difficulty. When
it is difficult to determine the parameters in the
equations of state for complex molecules, which
are usually related to critical constants and
other parameters, the sound velocity data will
provide a promising tool for evaluating those.

The stepwise integration methods to take
advantage of the sound velocity data have been
applied to gases at moderate pressures, and
liquids or supercritical fluids at high pressures
with the reliable results. By reducing the
gradual accumulation of errors during the
successive integrations, the attempts to extend
the stepwise construction technique to mixtures
as well as to pure components over more wide
range of conditions are to be desired.
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Appendix 1. Various expressions for
sound velocity and compressibility

sound velocity
o1 __V __ V®(3P
oxs  Myxs MW( A% )s (Al)
oy __ N ___ WN:/GP
oxT Myx 1 Mw( oV )T (A2)
2__ _yZRT (V \( 9P
¢ iy (7 )5V ) (A3)

== ———+—] | (Ad)

(A5)

(A6)

(A7)

v (A8)
TVxrrd L+ TVap
CV a C\,’XT

P =X—T+‘C_V— (A9)

B TVap AT
JCT—Xs‘l' CP —st+Clp< oP )S

- (A10)

Appendix 2. Sound velocity
expressions for several equations of
state

(1) ldeal gas law

PV=RT (Al1l)
" (A12)

(2) Virial equation_of state
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_RT

RT B C D
P V(1+V+V2+V3+“') (A13)
70RT A A
= [1+ V§+V‘§+...] (A14)
where
dB
A, =[2B+2(y,—1)TSE
[ 2 dT (A15)
(70_1) ZdZB
T T de]
Aa—{B+@n DTS
aB 1 (r,—1)?
(- DT
dTyZ Yo (AI6)
L 221 1,.4C
7o St Tar
(70—1)2 2d2C
+ 27, T dT?
dB » d°B _1yrdB
A= (TdT T de)[b+(27o pr48
. ZdZB 2 (70_1)2
+(70 l)T dTZ Yo
2 2
+—L[B+2(70—1)T +(7,— DT? STBZJ
dC |, e dC
x[2C+ 27T g5 + (o= DT de]
2(7,— 1) 27, +2)(7,—1) .. dD
S T TR
(70_1)2 2d2D
t g Tt
(A17)
or
P=RL (1 1B P+CPZ+DP3+...) (A8
— V oo w

RT .
c =?1’\°-,I—W[I+A2'P+A3’PZ+A4’P3+...]

(A19)
where
=B ,_ C—B?
B - RT ’ C (RT)2 1
, _ _D—3BC+2B?
D' = (RT)3 (A20)

A, A;—BA,

RT (RT)*

A,—2BA;+(2B*—C)A,
(RT)?

A, = Ay =

A/ = (A21)

(3) Soave-Redlich-Kwong equation of state”"

__RT aq
"V—-b V(V+b)

(&) =l
(v

P (A22)

(A23)

Z)(H 75 )

(4) Peng-Robinson equation of state!”

RT aa
V—=b V(V+b)+b(V—-h)

(&) =) -

(w5 —afoe

P= (A24)

N 2VZ+p? )]

V(V+b)—b(V—b)
(A25)
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