Comparative Activities of CH2150 and Sulbactam as ${\beta}$-Lactamase Inhibitors Against Escherichia coli and Staphylococcus Aureus Resistant to Ampicillin/Sulbactam

암피실린/설박탐에 내성을 갖는 대장균과 포도상구균에 대한 베타-락타메이즈 억제제 CH2150과 설박탐의 항균효과 비교

  • Published : 1997.02.01

Abstract

To overcome the problems of the resistance to clavulanic acid, many researchers are developing novel inhibitors that are not sensitive to new mutant ${\beta}$-lactamases. In order to evaluate newly synthesized compound CH2150 (Sodium (3S.5R)-6(Z)-[1-{1-(2-{2-benzoxazoly}thioethyl)-l.2,3-txiazol-4-yl}methylene] penicillanate-1,1-dioxide) as a ${\beta}$-lactamase inhibitor, we examined inhibitory activity of CH2150 against ${\beta}$-lactamases of clinical isolates resistant to ampicillin/sulbactam(12 strains of Escherichia coli and 13 strains of Staphylococcus aureus), and compared with that of sulbactam. Nitrocefin was used as substrate for ${\beta}$-lactamases, and the increase of absorbance was measured spectrophotometerically at 482 nm. ${\beta}$-Lactarnase inhibition of CH2150 against ${\beta}$-lactamases was 73 ~ 96% in E. coli and 76 ~ 79% in S. aureus. Comparatively, that of sulbactam was 96 ~ 100% and 96 ~ 100%, respectively. The inhibitory activity of CH2150 was slightly lower than that of sulbactam. The MIC values of ampicillin combined with CH2150 (2:1) for the clinical isolates were 4~512 ${\mu}$g/ml for E. coli and 1.0 ~ 64 ${\mu}$g/ml for S. aureus, whereas 0.5~16 ${\mu}$g/ml for E. coli and 0.25~8 ${\mu}$g/ml for S. aureus when combined with sulbactam (2:1).

Keywords

References

  1. Press Med v.46 Mecanisme de resistance enzymatique zux β-lactamines Phillipon, A.;Paul, G.;Nevot, P.
  2. New Eng. J. of Med. v.324 no.9 New mechanisms of bacterial resistance to antimicrobial agents Jacoby, G. A.;Archer, G. L.
  3. Infection v.11 Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens Konthe, H.;Shah, P.;Kremery, V.;Antal, M.;Mitsuhashi, S.
  4. Lancet v.2 Resistance to betalactam/clavulanate Martinez, J. L.;Cercenado, E.;Rodriguez-Creixems, M.;Vicente-Perez, M. F.;Delgado-Iribarren, A.;Baquero, F.
  5. Antimicrob. Ag. Chemother v.35 Acquired resistance of Norcardia brasiliensis to clavulanic acid related to a change in β-lactamase following therapy with amoxicillin-clavulanic acid Steungrube, V. A.;Wallace, R.;Brown, B. A.;Pang, Y.;Zeluff, B.;Steele, L. C.;Zhang, Y.
  6. Abstr. 31st Intersci. Conf. Antimicrob. Ag. Chemother v.16 Effect of amino acid substitution at position 241 of TEM-1 β-lactamase on inactivation by β-lactamase inactivators Manavathu, E. K.;Lerner, S. A.;Mobashery, S.
  7. Abstr. 11th Interdisc. Meet. Anti-infect. Chemother v.25 no.C3 Modifications structurales spontanees de la β-lactamase TEM-1 entrainant la perte de la synergie entre les β-lactamases et les inhibiteurs de β-lactamases Belaaouaj, A.;Lapoumeroulie, C.;Vedel, G.;Nevot, P.;Krishnamoorthy, R.;Paul, G.
  8. Antimicrob. Ag. Chemother v.33 First characterization of inhibitor-resistant TEM(IRT) β-lactamases in Klebsiella pneumoniae strains Lemozy, J.;Sirot, D.;Chanal, C.;Huc, C.;Labia, R.;Dabernat, H.;Sirot, J.
  9. Antimicrob. Ag. Chemother. v.38 Emergence of clinical isolates of Escherichia coli producing TEM-1 derivatives or an OXA-1 β-lactamases conferring resistance to β-lactamase inhibitors Xiang, Y.;Bordon, F.;Sirot, D.;Kitzis, M. D.;Gutman, L.
  10. FEMS Microbiol. Lett. v.70 TRC-1 : Emergence of a clavulanic acid-resistant TEM β-lactamase in a clinical strain Thomson, C. J.;Amyes, S. J. B.
  11. J. Antimicrob. Chemother. v.30 Clinical isolates of Escherichia coli producing TRI β-lactamase inhibitors Vedel, G.;Belaaouaj, A.;Gilly, L.;Labia, R.;Philippon, A.;Nevot, P.
  12. Amer. soc. Microbiol v.39 Molecular characterization of nine different types of mutants among 107 inhibitor resistant TEM β-lactamases from clinical isolates of Escherichia coli Henquell, C.;Chanal, C.;Sirot, D.;Labia, R.;Sirot, J.
  13. Antimicrob. Ag Chemother v.37 Characterization of a new TEM β-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli Blazque, J.;Baquero, M.;Cantan, R.;Alos, I.;Baquero, F.
  14. Antimicrob. Ag. Chemother. v.34 Development of Oligotyping for characterization and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriacease Mabilat C.;Courvalin, P.
  15. Rev. Infect. Dis. v.8 Sulbactam/ampicillin: in vitro spectrum, potency, and activity in models of acute infection Retsema, J. A.;English, A. R.;Girard, A.;Lynch, J. E.;Anderson, M.;Brennan, L.;Cimochowski, C.;Haiella, J.;Norcia, W.;Sawyer, P.
  16. Antimicrob. Ag. Chemother. v.33 Comparative in vitro and in vivo activities of piperacillin combined with the β-lactamase inhibitors tazobactam, clavulanic acid, and sulbactam Kuck, N. A.;Jacobus, N. V.;Petersen, P. J.;Weiss, W. J.;Testa, R. T.
  17. Antimicrob. Agent. Chemother. v.29 Comparative activities of the β-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with ampicillin and broad spectrum penicillins against defined β-lactamase-producing aerobic Gram-negative bacilli Jacobs, M. R.;Arnoff, S. C.;Johenning, S.;Shlaes, D. M.;Yamabe, S.
  18. Antimicrob. Ag. Chemother v.26 Comparative activities of the β-lactamase inhibitors YTR 830, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin Arnoff, S. C.;Jacobs, M. R.;Johenning, S.;Yamabe, S.
  19. Antimicrob. Ag. Chemother v.1 Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate O'Challaghan, C. H.;Morris, A.;Curby, S. A.;Shingler, A. H.
  20. Appl. Microbiol. v.23 Comparison of the substrate specificities of the β-lactamases from Klebsiella aerogenes 1082E and Enterobacter cloacae p99 Marchall, M. J.;Ross, G. W.;Chanter, K. V.;Harris, A. M.
  21. J. Gen. Microbiol. v.88 The use of analytical isoelectric focusing for detection and identification of β-lactamases Matthew, M.;Harris, A. M.;Marshall, M. J.;Ross, G. W.
  22. Anal. Biochem. v.142 Analytical isoelectric focusing using a high voltage vertical slab polyacrylamide gel system Giulian, G. G.;Moss, R. L.;Greaser, M.
  23. Anal. Biochem. v.167 Rapid isoelectric focusing in a vertical polyacrylamide minigel system Robertson, E. F.;Dannelly, H. K.;Malloy, P. J.;Reeves H. C.