Abstract
Estimation of the dielectric properties of insulating silicone rubbers added reinforcing fillers $(SiO_2,\;0{\sim}140phr)$ are very important to investigate the polymer structure. The characteristies of the dielectric absorption in insulating silicone rubbers were studied in the frequency range from 30Hz to 1MHz at the temperature range from $0{\sim}170^{\circ}C$. In the case of non-filled specimen, the dielectric loss is due to the syloxane which is the main chain of silicone rubber at the low temperature below $50^{\circ}C$ and the frequency at 330Hz, and is due to methyl and vinyl radical over the frequency of 1MHz. It is confirmed that the methyl radical or the vinyl radical becomes thermal oxidation at the high temperature over $100^{\circ}C$ and then the dielectric disperssing owing to the carboxyl radical Is appeared. In the case of filled specimen, the dielectric constant is in creased with the additives of reinforcing fillers due to the effect of interfacial polarization explained by MWS(Maxwell-Wagner-Sillars)'s law. The dielectric loss is decreased by the disturbance of reinforcing fillers that is permeated between networks.