Abstract
Diazidophenylmethane derivatives(X: p-H, $p-OCH_3,\;p-F,\;p-CH_3$) were synthesized and the rate constants of hydrolysis of diazidophenylmethane derivatives were determined by UV spectrophotometry in 50:50(v/v) aqueous methanol at 25$^{\circ}C$. On the basis of rate equation, substituent effect, activation parameters, solvent effect, salt effect, and product analysis, it may be concluded that the hydrolysis of diazidophenylmethane derivatives proceed through $S_N2_CA$ mechanism below pH 2.0, while above pH 12.0 through $S_N2$ mechanism, and in the range of pH from 2 to 12 through $S_N1$ mechanism respectively.
Diazidophenylmethane 유도체들(X: p-H, $p-OCH_3,\;p-F,\;p-CH_3$)을 합성하여 25$^{\circ}C$의 50:50(v/v) MeOH/$H_2O$ 혼합용매(${\mu}=0.1$ : KCl)에서의 pH 변화에 따른 가수분해 반응 속도상수를 측정하여 유도된 반응속도식과 치환기효과, 용매효과, 염효과, 열역학적 활성화 파라미터, 그리고 생성물분석의 결과로부터 낮은 $pH(0{\leq}pH<2)$에서는 $S_N2_CA$, 중간 pH(2$S_N1$, 그리고 높은 $pH(12에서는 $S_N2$ 반응메카니즘을 각각 제안하였다.