Diazidophenylmethane 유도체들의 가수분해반응 메카니즘에 대한 반응속도론적 연구

Kinetics and Mechanism of the Hydrolysis of Diazidophenylmethane Derivatives

  • 권기성 (충남대학교 자연과학대학 화학과) ;
  • 서지형 (충남대학교 자연과학대학 화학과) ;
  • 이용구 (한국화학연구소)
  • Kwon, Ki Sung (Department of Chemistry, Chungnam National University) ;
  • Seo, Jee Hyung (Department of Chemistry, Chungnam National University) ;
  • Lee, Yong Gu (Department of Chemistry, Chungnam National University)
  • 발행 : 19970600

초록

Diazidophenylmethane 유도체들(X: p-H, $p-OCH_3,\;p-F,\;p-CH_3$)을 합성하여 25$^{\circ}C$의 50:50(v/v) MeOH/$H_2O$ 혼합용매(${\mu}=0.1$ : KCl)에서의 pH 변화에 따른 가수분해 반응 속도상수를 측정하여 유도된 반응속도식과 치환기효과, 용매효과, 염효과, 열역학적 활성화 파라미터, 그리고 생성물분석의 결과로부터 낮은 $pH(0{\leq}pH<2)$에서는 $S_N2_CA$, 중간 pH(2$S_N1$, 그리고 높은 $pH(12에서는 $S_N2$ 반응메카니즘을 각각 제안하였다.

Diazidophenylmethane derivatives(X: p-H, $p-OCH_3,\;p-F,\;p-CH_3$) were synthesized and the rate constants of hydrolysis of diazidophenylmethane derivatives were determined by UV spectrophotometry in 50:50(v/v) aqueous methanol at 25$^{\circ}C$. On the basis of rate equation, substituent effect, activation parameters, solvent effect, salt effect, and product analysis, it may be concluded that the hydrolysis of diazidophenylmethane derivatives proceed through $S_N2_CA$ mechanism below pH 2.0, while above pH 12.0 through $S_N2$ mechanism, and in the range of pH from 2 to 12 through $S_N1$ mechanism respectively.

키워드

참고문헌

  1. J. Am. Chem. Soc. v.101 Young, P. R.;Jencks, W. P.
  2. J. Am. Chem. Soc. v.101 Harris, J. M.;Shafer, S. G.;Moffatt, J. R.;Becker, A. R.
  3. Acc. Chem. Res. v.13 Pross, A.;Shaik, S. S.
  4. J. Am. Chem. Soc. v.112 Amyes, T. L.;Richard, J. P.
  5. J. Am. Chem. Soc. v.111 Richard, J. P.
  6. J. Am. Chem. Soc. v.106 Richard, J. P.;Rothenberg, M. E.;Jencks, W. P.
  7. J. Am. Chem. Soc. v.106 Richard, J. P.;Jencks, W. P.
  8. J. Am. Chem. Soc. v.111 Richard, J. P.
  9. J. Am. Chem. Soc. v.111 Amyes, T. L.;Jencks, W. P.
  10. The Chemistry of the Azido Group Biffin, M. E. C.;Miller, J.;Paul, D. B.;Patai, S.(ed.)
  11. Banthorpe, D. V.
  12. Molecular Rearrangement Smith, P. A. S.;de Mayo(ed.)
  13. J. Am. Chem. Soc. v.99 Young, P. R.;Jencks, W. P.
  14. J. Am. Chem. Soc. v.116 Richard, J. P.;Amyes, T. L.;Lee, Y. G.;Jagannadham, V.
  15. J. Am. Chem. Soc. v.104 Richard, J. P.;Jencks, W. P.
  16. Tetrahedron v.43 Nishiyama, K.;Oba, M.;Watanabe, A.
  17. J. Am. Chem. Soc. v.117 Richard, J. P.;Amyes T. L.;Jagannadham, V.;Lee, Y. G.;Rice, D. J.
  18. Gas Chromatography
  19. Buffers for pH and Metal Ion Control Perrin, D. D.;Dempsey, B.;
  20. J. Am. Chem. Soc. v.70 Grunwald, E.;Winstain, S.
  21. Acta. Chem. Scand. v.19 Kivinen, A.
  22. Acta. Chem. Scand. v.9 Tommila, E.
  23. Can. J. Chem. v.55 Buncel, E.;Millingston, J. P.;Wilshire, J. F.
  24. J. Org. Chem. v.42 Ballistreri, F. P.;Maccarone, E.;Musmarra, G.;Thomaselli, G. A.
  25. J. Chem. Soc. Bateman, L. C.;Church, M. G.;Hughee, C. K.;Ingold, C. K.;Taher, N. A.
  26. Advanced Org. Chem. Carey, F. A.;Sundberg, R. J.
  27. Mechanism in Org. Chem. Alder, R. W.;Baker, R.;Brown, J. M.