Acid-Catalyzed Hydrolysis Mechanism of 3,3-Bis(methylthio)-2-propen-1-phenyl-1-one Derivatives

3,3-Bis(methylthio)-2-propen-1-phenyl-1-one 유도체들의 산-촉매 가수분해 반응 메카니즘

  • Kwon, Ki Sung (Department of Chemistry, Chungnam National University) ;
  • Park, Chan Hun (Department of Chemistry, Chungnam National University) ;
  • Sung, Nack Do (Division of Applied Biology and Chemistry, Chungnam National University)
  • 권기성 (충남대학교 자연과학대학 화학과) ;
  • 박찬훈 (충남대학교 자연과학대학 화학과) ;
  • 성낙도 (충남대학교 농과대학 응용생물화학부)
  • Published : 19970300

Abstract

Acid-catalyzed hydrolysis of 3,3-bis(methylthio)-2-propen-1-phenyl-1-one derivatives were studied kinetically in concentrated aqueous hydroperchloric acid(-Ho < 2.23) at $30^{\circ}C.$ The substituent effect, analysis of hydrolysis product, hydration $parameter({\omega} & {\phi}$) from the Bunnett equation and the Bunnett-Olsen equation on the rate indicate that the acid-catalyzed hydrolysis of the substrates below 3.8 M hydroperchloric acid media occurs through A-1 type reaction($3.3 >{\omega},\;0.58 >{\phi} & {\rho}< 0$) mechanism and above 3.8 M hydroperchloric acid, the reaction proceeds A-2 type reaction($0 <(\omega)$, $0 <{\phi} & (\rho)> 0$) mechanism.

30$^{\circ}C$의 센(-Ho < 2.23) 과염소산 수용액 속에서 3,3-bis(methylthio)-2-propen-1-phenyl-1-one 유도체들의 산-촉매 가수분해 반응을 속도론적으로 연구하였다. 치환기 효과, 가수분해 생성물의 분석, Bunnett식 및 Bunnett-Olsen식의 hydration 파라미터(${\omega}$${\phi}$)로부터 3.8 M 이하의 묽은 산 용액에서는 A-1형 반응($3.3 >{\omega},\;0.58 > {\phi}$${\rho} < 0$)이 그리고 3.8 M 이상의 진한 산 용액에서는 A-2형 반응($0 <{\omega},\;0 < {\phi}$${\rho} > 0$) 메카니즘으로 산-촉매 가수분해 반응이 일어난다.

Keywords

References

  1. J. Am. Chem. Soc. v.101 McClelland, R. A.;Ahmad, M.;Mandrapilias, G.
  2. J. Am. Chem. Soc. v.100 McClelland, R. A.;Ahmad, M.;Mandrapilias, G.
  3. J. Am. Chem. Soc. v.105 Changm, Y.;Kresge, A. J.;Lahti, M. O.;Week, D. P.
  4. J. Chem. Soc. Perkin. Trans Ⅱ Penn, D.;Satchell, D. P. N.
  5. J. Chem. Soc. Perkin. Trans Ⅱ Satchell, D. P. N.;Satchell, R. S.
  6. Progs. Phys. Org. Chem v.4 Streitwiser, A.(ed.);Taft, R. W.(ed.)
  7. J. Am. Chem. Soc. v.105 Okuyama, T.;Kawao, S.;Fueno, T.
  8. J. Am. Chem. Soc. v.102 Okuyama, T.;Kawao, S.;Fueno, T.
  9. J. Am. Chem. Soc. v.105 Okuyama, T.;Kawao, S.;Fueno, T.
  10. J. Am. Chem. Soc. v.106 Okuyama, T.
  11. J. Org. Chem. v.49 Okuyama, T.;Kawao, S.;Fueno, T.;Fukiwara, W.
  12. Sulfure Bonding Price, C. C.;Oae, S.
  13. Adv. Phys. Org. Chem. v.13 Gold, V.(ed.);Bethell, D.(ed.)
  14. Can. J. Chem. v.44 Bunnett, J. F.;Olsen, F. P.
  15. Chem. Ber. v.95 Gomer, G.;Topell, W.
  16. Bull. Soc. Chem. France Thuillier, A.;Vialle, J.
  17. Tetrahedron v.28 Larsson, F. C. V.;Lawesson, S. O.
  18. J. Am. Chem. Soc. v.83 Bunnett, J. F.
  19. J. Chem. Soc. Banthorpe, D. V.;Hugres, E. D.;Ingold, C. K.
  20. Physical Organic Chemistry Isaacs, N. S.
  21. Hammett Equation Johnson, C. D.
  22. J. Am. Chem. Soc. v.105 Kresege, A. J.;Straub, T. S.
  23. Mechanism and Theory in Organic Chemistry (3rd ed.) Lowry, T. H.;Richardson, K. S.
  24. J. Korea Chem. Soc. v.28 Sung, N. D.;Kwon, K. S.;Chun, Y. G.;Kim, T. R.
  25. The Physical Basis of Organic Chemistry Maskill, H.
  26. Can. J. Chem. v.57 Guthrie, J. P.;Cullimore, P. A.
  27. The Chemistry of the Carbonyl Group v.2 Patai, S.(ed.)
  28. Reaction Kinetics Laides, K. J.