Taurodeoxycholate에 의한 뇌 포스포리파제 D의 용해: 몇 금속이온의 활성화 효과

Solubilization of Brain Phospholipase D by Taurodeoxycholate: Activational Effect of Some Matal Ions

  • 최석우 (서울대학교 자연과학대학 화학과,분자촉매 연구센터) ;
  • 최명언 (서울대학교 자연과학대학 화학과,분자촉매 연구센터)
  • Choi, Seok Woo (Department of Chemistry and Center for Molecular Catalysis, Seoul National University) ;
  • Choi, Myung Un (Department of Chemistry and Center for Molecular Catalysis, Seoul National University)
  • 발행 : 19971200

초록

쥐의 미크로좀 포스포리파제 D(PLD)를 센 이온세기 상태에서 0.2% taurodeoxycholate를 사용하여 용해시켰다. 포스포리파제 D의 활성은 기질로 방사성 동위원소로 표지 된 dipalmitoylphophatidylcholine을 사용하여 생성된 phosphatidic acid(PA)를 측정하여 결정하였다. 용해된 PLD의 초적 pH와 온도는 각각 6.5와 30$^{\circ}C$로서 용해되기 전 미크로좀 상태의 PLD와 비슷하였다. 올레산의 활성화 효과는 4 mM 농도에서 관찰되었다. PLD 활성도에 미치는 금속이온 영향을 조사한 결과 $Mg^{2+},\; Ca^{2+},\; Sr^{2+}, \;Ba^{2+}$와 같은 알칼리 토금속은 모두 PA 생성을 촉진시킨 반면, $Cu^{2+},\; Cd^{2+},\; Al^{3+},\; Ni^{2+},\; V^{5+}$는 억제하였다.

Microsomal phospholipase D (PLD) in rat brain was solubilized employing 0.2 % taurodeoxycholate in high ionic strength. Phopholipase D activity was determined by measuring product phophatidic acid (PA) using isotope-labelled dipalmitoylphophatidylcholine as a substrate. The solubilized PLD showed an optimal pH of 6.5 and the highest activity at 30$^{\circ}C.$ These properties were similar to those of microsomal PLD before solubilization. The stimulatory effect of oleic acid was observed at the concentration of 4 mM. When effects of metal ions on PLD activity were examined, alkaline earth metals such as $Mg^{2+},\; Ca^{2+},\; Sr^{2+}, \;Ba^{2+}$ promoted the PA production but $Cu^{2+},\; Cd^{2+},\; Al^{3+},\; Ni^{2+},\; V^{5+}$ showed inhibitory effects.

키워드

참고문헌

  1. Biochem. J. v.295 Horwitz, J.;Davis, L. L.
  2. Biochim. Biophys. Acta v.1084 Holbrook, P. G.;Pannell, L. K.;Daly, J. W.
  3. Prog. Chem. & Chem. Eng. v.31 Kim, B.;Choi, M.
  4. Adv. Lipid Res. v.16 Heller, M.
  5. Tips v.15 Boarder, M. R.
  6. Adv. Pharmacol. v.24 Thompson, N. T.;Garland, L.;Bouser, R. W.
  7. Oncogene v.8 Cuadrado, A.;Carnero, A.;Dolfi, F.;Jimenez, B.;Lacal, J. C.
  8. Biochim. Biophys. Acta v.1212 Exton, J. H.
  9. Signal-activated phospholipases Liscovitch, M.
  10. Cell v.80 Divecha, N.;Irvine, R.
  11. Cell v.75 Brown, H. A.;Gutowski, S.;Moormaw, C. R.;Slauter, C.;Sternweis, P. C.
  12. J. Biol. Chem. v.271 Han, J.-S.;Chung, J.-K.;Kang, H.-S.;Donaldson, J.;Bae, Y. S.;Rhee, S. G.
  13. J. Biol. Chem. v.269 Wang, X.;Xu, L.;Zheng, L.
  14. Plant Cell Physiol. v.36 Veki, J.;Morika, S.;Komari, L.;Kumashiro, T.
  15. J. Biol. Chem. v.270 Hammond, D. M.;Altshuller, Y. M.;Sung, T.-C.;Rudge, S. A.;Rose, K.;Engebrecht, J.;Morris, A. J.;Frohman, M. A.
  16. J. Biol. Chem. v.271 Waksman, M.;Eli, Y.;Liscovitch, M.;Gerst, J. E.
  17. Methods in Enzymol. v.197 Dennis, E. A.
  18. J. Biol. Chem. v.254 Taki, T.;Kanfer, J. N.
  19. J. Neurochem v.48 Kobayashi, M.;Kanfer, J. N.
  20. J. Biol. Chem. v.265 Chalifa, V.;Mohn, H.;Liscovitch, M.
  21. J. Biol. Chem. v.266 Wang, P.;Anthes, J.;Siegel, M.;Egan, R. W.;Billah, M. M.
  22. J. Neurochem. v.45 Hattori, H.;Kanfer, J. N.
  23. Methods in Enzymol. v.197 Kobayashi, M.;Kanfer, J. N.
  24. Lipids v.26 Kanoh, H.;Kanaho, Y.;Nozawa, Y.
  25. Proc. Natl. Acad. Sci. USA v.91 Massenburg, D.;Han, J.-S.;Liyanage, M.;Patton, W. A.;Rhee, S. G.;Moss, J.;Vaughan, M.
  26. J. Biol. Chem. v.269 Okamura, S.;Yamashita, S.
  27. J. Biol. Chem. v.270 Brown, H. A.;Gutowski, S.;Kahn, R. A.;Sternweis, P. C.
  28. Bull. Korean Chem. Soc. v.10 Jung, K.;Koh, E.;Choi, M.
  29. Anal. Biochem. v.72 Bradford, M. M.
  30. J. Biol. Chem. v.234 Bartlett, G. R.
  31. J. Neurochem. v.39 Chalifour, R.;Kanfer, J. N.
  32. Biochem. Biophys. Res. Commun. v.154 Balsinde, J.;Diez, E.;Mollinedo, F.
  33. J. Biol. Chem. v.264 Billah, M. M.;Pai, J.-K.;Mullamann, T. J.;Siegel, M. I.
  34. FEBS Lett. v.337 Kanfer, J. N.;McCartney, D.
  35. Chem. Phys. Lipids v.80 Liscovitch, M.;Chalifa-Caspi, V.