DOI QR코드

DOI QR Code

Approximate Nonrandom Two-Fluid Lattice-Hole Theory. General Derivation and Description of Pure Fluids

  • Published : 1997.09.20

Abstract

An approximate molecular theory of classical fluids based on the nonrandom lattice statistical-mechanical theory is presented. To obtain configurational Helmholtz free energy and equation of state (EOS), the lattice-hole theory of the Guggenheim combinatorics is approximated by introducing the nonrandom two-fluid theory. The approximate nature in the derivation makes the model possible to unify the classical lattice-hole theory and to describe correctly the configurational properties of real fluids including macromolecules. The theory requires only two molecular parameters for a pure fluid. Results obtained to date have demonstrated that the model correlates quantitatively the first- and second-order thermodynamic properties of real fluids. The basic simplicity of the model can readily be generalized to multicomponent systems. The model is especially relevant to (multi) phase equilibria of systems containing molecularly complex species.

Keywords

References

  1. Mixture Guggenheim, A.
  2. J. Chem. Eng. v.59 Panayiotou, C.;Vera, J. H.
  3. J. Chem. Phys. v.9 Flory, P. J.
  4. J. Chem. Phys. v.9 Huggins, M. L.
  5. Ann. N. Y. Acad. Sci. v.43 Huggins, M. L.
  6. AIChE. J. v.21 Abrams, D.;Prausnitz, J. M.
  7. Nature v.252 Sanchez, I. C.;Lacombe, R. H.
  8. J. Phys. Chem. v.80 Sanchez, I. C.;Lacombe, R. H.
  9. J. Phys. Chem. v.80 Sanchez, I. C.;Lacombe, R. H.
  10. J. Chem. Phys. v.75 Kehiaian, H. V.;Grolier, P. E.;Bebson, G. C.
  11. Polymer J. v.13 Okada, M;Nose, T.
  12. Polymer J. v.14 Panayiotou, C.;Vera, J. H.
  13. Ind. Eng. Chem. Res. v.26 Kumar, S. K.;Suter, U. W.;Reid, R. C.
  14. Fluid Phase Equilibria v.34 Smirnova, N. A.;Victorov, A. I.
  15. Fluid Phase Equilibria v.93 You, S. S.;Yoo, K.-P.;Lee, C. S.
  16. Fluid Phase Equilibria v.93 You, S. S.;Yoo, K.-P.;Lee, C. S.
  17. J. Supercritical Fluids v.6 You, S. S.;Lee, C. S.;Yoo, K.-P.
  18. J. Supercritical Fluids v.7 You, S. S.;Lee, C. S.;Yoo, K.-P.
  19. Int. J. Thermophysics v.16 Shin, M. S.;Yoo, K.-P.;You, S. S.;Lee, C. S.
  20. Fluid Phase Equilibria v.111 Yoo, K.-P.;Shin, M. S.;Yoo, S. J.;You, S. S.;Lee, C. S.
  21. Korean J. Chem. Eng. v.12 Yoo, K.-P.;Kim, H. Y.;Lee, C. S.
  22. Korean J. Chem. Eng. v.12 Yoo, K.-P.;Kim, H. Y.;Lee, C. S.
  23. J. Chem. Eng. Japan v.29 Yoo, K.-P.;Kim, J. S.;Kim, H. Y.;You, S. S.;Lee, C. S.
  24. Fluid Phase Equilibria v.117 Yoo, K.-P.;Lee, C.S.
  25. Fluid Phase Equilibria v.125 Yoo, S. J.;Yoo, K.-P.;Kim, H. Y.;Lee, C. S.
  26. J. Phys. Chem. B. v.101 Yoo, S. J.;Yoo, K.-P.;Lee, C. S.
  27. J. Am. Chem. Soc. v.86 Wilson, G. M.
  28. An Introduction to Statistical Mechanics Hill, T. L.
  29. Physicochemical Constants of Pure Organic Compounds v.1 Timmermans, J.
  30. The Properties of Gases and Liquids(4th eds.) Reid, R. C.;Prausnitz, J. M.;Poling, B. E.
  31. Matheson Gas Data Book(6th ed.) Braker, W.;Mossman, A. L.
  32. Properties of Polymers van krevelen, D. W.
  33. Physical Properties of Molecular Crystals, Liquids and Glases Bondi, A.
  34. AIChE. J. v.21 Fredenslund, A.;Jones, R. L.;Prausnitz, J. M.
  35. J. Math. Phys. v.4 Kac, M.;Uhlenbeck, G. E.;Hemmer, P. C.
  36. J. Math. Phys. v.5 Uhlenbeck, G. E.;Hemmer, P. C.;Kac, M.
  37. Mol. Phys. v.9 Guggenheim, E. A.
  38. Mol. Phys. v.9 Guggenheim, E. A.
  39. Mol. Phys. v.8 Longuet-Higgins, H. C.;Widom, B.
  40. Macromolecules v.8 Beret, S.;Prausnitz, J. M.
  41. Polymer J. v.13 Okada, M.;Nose, T.