DOI QR코드

DOI QR Code

Synthesis and Electrochemical Studies of Cu(II) and Ni(II) Complexes with Tetradentate Schiff Base Ligands

  • Published : 1997.08.20

Abstract

A series of tetradentate Schiff-base ligands; 1,3-bis(salicylideneimino) propane, 1,4-bis(salicylideneimino)butane, and 1,5-bis(salicylideneimino)pentane, and their Cu(Ⅱ) and Ni(Ⅱ) complexes have been synthesized. The properties of ligands and complexes have been characterized by elemental analysis, IR, NMR, UV-Vis spectra, molar conductance, and thermogravimetric anaylsis. The mole ratio of Schiff base to metal at complexes was found to be 1 : 1. All complexes were four-coordinated configuration and non-ionic compound. The electrochemical redox processes of the ligands and their complexes in DMF solution containing 0.1 M TEAP as supporting electrolyte have been investigated by cyclic voltammetry, chronoamperometry, differential pulse voltammetry at glassy carbon electrode, and by controlled potential coulometry at platinum gauze electrode. The redox process of the ligands was highly irreversible, whereas redox process of Cu(Ⅱ) and Ni(Ⅱ) complexes was observed as one electron transfer process of quasi-reversible and diffusion-controlled reaction. Also the electrochemical redox potentials of complexes were affected by chelate ring size of ligands. The diffusion coefficients of Cu(Ⅱ) and Ni(Ⅱ) complexes in DMF solution were determined to be 4.2-6.6×10-6 cm2/sec. Also the exchange rate constants were determined to be 3.6-9.7×10-2 cm/sec.

Keywords

References

  1. Acc. Chem. Res. v.8 Basolo, F.;Hoffmann, B. M.;Ibers, J. A.
  2. Chem. Rev. v.79 Jones, R. D.;Summerville, D. A.;Basolo, F.
  3. J. Org. Chem. v.35 Tomaja, D. L.;Vogt, L. H.;Wirth, J. G.
  4. J. Chem. Soc. Chem. Commun. v.896 Nishinaga, A.;Tojo, T.;Matsuura. T.
  5. Oxygen Complexes and Oxygen Activation by Transition Metals Busch, D. H.;Martell, A. E.(ed.);Martell, A. E.(ed.);Sawyer, D. T.(ed.)
  6. Inorg. Chem. v.28 Chen, D.;Martell, A. E.;Sun, Y.
  7. Inorg. Chem. v.26 Chen, D.;Martell, A. E.
  8. Chem. Rev. v.99 Efimov, O. N.;Strelets Coord.
  9. J. Chem. Soc. Dalton Trans. v.421 Ashmawy, F. M.;Issa, R. M.;Amer, S. A.;McAuliffe, C. A.;Parish, R. V.
  10. J. Chem. Soc. Dalton Trans. McAuliffe, C. A.;Parish, R. V.;Ashmawy, F. M.;Issa, R. M.;Amer, S. A.
  11. J. Electroanal. Chem. v.117 Gosden, C.;Kerr, J. B.;Pletcher, D.;Rosas, R.
  12. Electrochim. Acta v.37 Isse, A. A.;Genaro, A.;Vianello, E.
  13. Analyst v.119 Smith, W. E.;El-Shahawl, M. S.
  14. Inorg. Chem. Acta v.128 Kotocova, A.;Sima, J.;Valigura, D.;Fodran, P.
  15. J. Coord. Chem. v.24 Kotocova, A.;Valigura, D.;Sima, J.
  16. Monmatsh. Chem. v.125 Kotocova, A.;Sima, J.
  17. J. Chem. Papers v.48 Kotocova, A.;Sima, J.
  18. Purification of Laboratory Chemicals Perrin, D. D.;Armarego, W. L. F.
  19. Coor. Chem. Rev. v.7 Geary, W. J.
  20. Inorg. Chem. v.15 Boucher, L. J.
  21. J. Coor. Chem. Ma, Y.-X.;Lu, Z.-L,Q.-B.;WU, X.-L.
  22. J. Chem. Soc. Dalton Trans. McAuliffe, C. A.;McCullough, F. P.;Parrott, M. J.;Arlyn Rice, C.;Shyle, B. J.;Levason, W.
  23. J. Phys. Chem. v.27 Ueno, K.;Martell, A. E.
  24. J. Chem. Phys. v.32 Nakamoto, K.;Martell, A. E.
  25. J. Am. Chem. Soc. v.88 Sacconi, L.;Bertini, I.
  26. J. Am. Chem. Soc. v.86 Sarama, B. D.;Ray, K. R.;Sievers, R. E.;Bailar, J.
  27. J. Am. Chem. Soc. v.101 Coleman, W. M.;Goehring, R. R.;Taylor, L. T.;Mason, J. G.;Boggess, R. K.
  28. Electrochemical Methodes no.Chap. 5-6 Bard, A. J.;Faulkner, L. R.