DOI QR코드

DOI QR Code

Interdiffusion at Interfaces of Polymers with Dissimilar Physical Properties

  • Published : 1997.07.20

Abstract

The interface between two different polymers is characterized theoretically by using a model. This model is based on the assumption that the monomeric friction coefficients of the two polymers are identical but a strong function of the matrix composition. This model predicts that the concentration profiles are highly asymmetric with substantial swelling of the slower-diffusing component by the faster component. To predict the behavior of interdiffusion, three quantities are used: distance of interface Z*(t) due to the swelling, interfacial width W(t) which is most sensitive to the detailed composition profiling, and mass transport M(t) due to interdiffusion. It is found that the more dissimilar polymer pairs, the faster the movement of the interface, the quicker its interfacial width saturates to a limiting value and the slower its mass transport. These results are in qualitative agreement with some experiments.

Keywords

References

  1. Annu. Rev. Mater. Sci. v.19 Kausch, H. H.;Tirrell, M.
  2. Macromolecules v.24 Sauer, B. B.;Walsh, D. J.
  3. Makromol. Chem., Makromol. Symp. v.40 Brochard-Wyart, F.;de Gennes, P. G.
  4. Proc. Toyota Conf. Stud. Polym. Sci. v.2 Brochard-Wyart, F.
  5. Macromolecules v.21 Jabbari, E.;Peppas, N. A.
  6. J. Phys. Rev. Lett. v.63 Chaturvedi, U. K.;Steiner, U.;Zak, O.;Krausch, G.;Klein
  7. J. Phys. Rev. Lett. v.64 Steiner, U.;Kraush, G.;Schatz, G.;Klein
  8. Scaling Concepts in Polymer Physics de Gennes, P. G.
  9. Macromolecules v.21 Tead, S. F.;Kramer, E. J.
  10. Macromolecules v.18 Green, P. F.;Palmstrom, C. J.;Mayer, J. W.;Kramer, E. J.
  11. Polymer v.25 Kramer, E. J.;Green, P. F.;Palmstrim, C. J.
  12. Makromol. Chem., Rapid Commun. v.8 Sillescu, H.
  13. Macromolecules v.24 Ascacu, A. Z.;Nagele, G.;Klein, R.
  14. Multicomponent Diffusion Cussler, E. L.
  15. Macromolecules v.24 Reiter, G.;Huttenbash, S.;Foster, M.;Stamm, M.
  16. J. Mater. Sci. v.26 Composto, R. J.;Kramer, E. J.
  17. Ann. NY Acad. Sci. v.34 Onasger, L.
  18. Phys. rev. v.37 Onasger, L.
  19. J. Mater. Sci. v.29 Jabbari, E.;Peppas, N. A.
  20. Principles of Polymer Chemistry Flory, P. J.
  21. J. Chem. Phys. v.56 Helfand, E.;Tagami, Y.
  22. J. Chem. Phys. v.62 Hefand, E.;Sapse, A. M.
  23. Macromolecules v.15 Leibler, L.
  24. J. Chem. Phys. v.72 De Gennes, P. G.
  25. J. Chem. Phys. v.79 Binder, K.
  26. Macromolecules v.23 Jilge, W.;Carmesin, I.;Kremer, K.;Binder, K.
  27. Macromolecules v.25 Roland, C. M.;Ngai, K. L.
  28. Peppas, polymer v.36 E. Jabbari, N. A.
  29. Macromolecules v.24 Green, P. F.;Adolf, D. B.;Gillion, L. R.
  30. Macromolecules v.25 Creton, C.;Kramer, E. J.;Hul, C. Y.;Brown, H. R.
  31. J. Chem. Phys. v.28 Cahn, J. W.;Hilliad, J. E.
  32. Acta Metall v.9 Cahn, J. W.
  33. Macromolecules v.26 Wang, S. Q.;Shi, Q. H.