Theoretical Studies on Phenyl Group Rearrangement of Protonated Ketones

Chang Kon Kim, Jin Kak Lee, Hyoung Yeon Park, and Ikchoon Lee
Department of Chemistry, Inha University, Inchon 402-751, Korea
Received April 23, 1997

Abstract

Gas-phase phenyl group migration within the protonated ketones has been studied MO theoretically using the AM1 method. The initial state structure shows relatively strong resonance delocalization of positive charge into the nonmigrating (Y) ring, while the ring migration (Z-ring) is nearly complete in the transition state. These results are reflected in the large $\rho^{+}{ }_{Z}(<0)$ and $\rho^{+}{ }_{Y}(>0)$ values and in the predominant contribution of resonance (r) over inductive (field, f) effect, r / f ranging from $1.3\left(\rho^{+}{ }_{\mathrm{Y}}\right)$ to $1.5\left(\rho^{+}\right)$. The cross-interaction constant ρ_{Yz} is vanishingly small ($\rho_{\mathrm{YZ}}=0.03$) which is in contrast to the larger magnitudes for benzilic ($\rho_{\mathrm{YZ}}=-0.48$) and azibenzil ($\rho_{\mathrm{YZ}}=-0.53$) rearrangement processes. The relationship found between the extent of resonance contribution in the initial state and the magnitude of $\rho_{\mathrm{Y} 2}$ provides strong support for the proportionality between the magnitude of ρ_{YZ} and the change in the intensity of interaction, $\Delta \mathrm{I}^{*}{ }_{\mathrm{YZ}}$, in the activation process.

Introduction

Phenyl group rearrangements have been experimentally observed in carbanionic, ${ }^{1}$ radical ${ }^{2}$ and carbocationic ${ }^{3}$ systems. 1,2-Shifts of phenyl occur readily when the half-mi-

grated structure, I, is stabilized. The structure I can be a transition state (TS) or perhaps an intermediate, in which case the migrating ring has a structure similar to the wellknown benzenium ion (or phenonium ion). ${ }^{3,4}$ In previous works, we have studied the cross-interaction between two substituents, Z and Y , in the migrating and non-migrating rings, respectively, in the migrating steps of benzilic ${ }^{5}$ and azibenzil ${ }^{6}$ rearrangements, eqs. (1) and (2), by determining the cross-interaction constant, ρ_{yz}, eq. (3). This simple second-order expression, eq. (3), is arrived at by a Taylor series expansion of $\log k_{\mathrm{yz}}$ about $\sigma_{Y}=\sigma_{\mathrm{Z}}=0$ and neglecting the pure second-order ($\rho_{Y Y}$ and $\rho_{Z Z}$) and higher-order ($\rho_{Y Y Z}$

ernatively given by eq. (4), and the magnitude of ρ_{yz} represents the change in the intensity of interaction ($\Delta \mathrm{I}^{*}{ }_{\mathrm{YZ}}$) between the two substituents, Y and Z , on going from the initial (I^{yz}) to transition state ($\mathrm{I}^{+}{ }_{\mathrm{yz}}$), eq. (5). ${ }^{8}$

$$
\begin{gather*}
\log \left(k_{\mathrm{Y} Z} / k_{\mathrm{HH}}\right)=\rho_{\mathrm{Y}} \rho_{\mathrm{Y}}+\rho_{\mathrm{Z}} \rho_{\mathrm{Z}}+\rho_{\mathrm{YZ}} \sigma_{\mathrm{Y}} \sigma_{\mathrm{Z}} \tag{3}\\
\rho_{Y Z}=\frac{\partial \rho_{\mathrm{Y}}}{\partial \sigma_{\mathrm{Z}}}=\frac{\partial \rho_{Z}}{\partial \sigma_{Y}} \tag{4}\\
\rho_{Y Z} \propto \Delta I^{+}{ }_{Y Z}=I^{\neq}{ }_{Y Z}-I_{Y Z}^{\alpha} \tag{5}
\end{gather*}
$$

We found that in the azibenzil case, eq. (2), the initial state, carbene 2 , is stabilized by the vicinal $n-\sigma^{*}$ overlap and there is a charge reversal in the two benzene rings on going from the initial state to the TS leading to a relatively large structural reorganization and the magnitude of $\rho_{\mathrm{yz}}(=-0.53)$ was similar to that involved in the benzilic case ($\rho_{\mathrm{yz}}=$ -0.48), eq. (1), for which no such initial state stabilization is possible. ${ }^{5}$

In order to extend this series of work to a system in which there is even stronger interaction between the substituents, Y and Z in the two rings in the initial state, we carried out MO theoretical studies of the gas-phase phenyl group migration within protonated ketones, eq. (6), ${ }^{9}$ using the AM1 method.

Calculations

The AM1 method ${ }^{117}$ was used throughout in this work. Details of the computational procedures are as described in pre-

Figure 1. The initial and transition state structures ($\mathrm{Y}=\mathrm{Z}=\mathrm{H}$). Bond lengths are in \AA
vious papers. ${ }^{5.6}$

Results and Discussion

Structures

Initial states. The structure of the initial, 3, and tran-

sition state, TS3, are shown in Figure 1. In the initial state, 3 , the positive charge on C^{2} is delocalized into the Y -ring, $3 \rightarrow \mathbf{3}$ (on-form). Reference to Table 1 reveals that bond length of the bond $\mathrm{C}^{2}-\mathrm{C}^{3}$ is considerably shorter than those of $\mathrm{C}^{\prime}-\mathrm{C}^{2}$ and $\mathrm{C}^{\prime}-\mathrm{C}^{4}$ (e.g. 1.416 vs 1.505 and 1.497 \AA, respectively with $\mathrm{Y}=\mathrm{OH}: \mathrm{Z}=\mathrm{CN}$). This bond becomes stretched by ca. 0.05 to $1.462 \AA$ when the Y -ring is rotated 90^{n} (off-form) around $\mathrm{C}^{2}-\mathrm{C}^{3}$ to break the conjugation. The resonance structure $\mathbf{3}^{+}$is stabilized by a stronger electron donor Y, and destabilized by a stronger electron acceptor Y. These effects of substituent Y on the on-form, 3 , are reflected in the bond lengths of $\mathrm{C}^{2}-\mathrm{C}^{3}$ (Table 1). The positive charge delocalization in 3^{\prime} is also reflected in the relatively large positive charge $(+0.30 \sim+0.38$ electronic

Table 1. AM1 optimized bond lengths in reactant $\left(d_{\mathrm{R}}\right)$ and changes, $\Delta d^{+}\left(=d^{*}{ }_{\mathrm{r}}{ }^{-}-d_{\mathrm{R}}\right)$ and $\Delta d^{\circ}\left(=d_{\mathrm{r}}-d_{\mathrm{k}}\right)$ in \AA

Z	Y	d_{R}				Δd^{*}				Δd°			
		$d_{1}{ }^{\text {a }}$	$d_{2}{ }^{\text {b }}$	$d_{3}{ }^{\text {c }}$	$d_{4}{ }^{\text {d }}$	$\Delta d_{1}{ }^{\text {F }}$	$\Delta d_{2}{ }^{*}$	$\Delta d_{3}{ }^{*}$	$\Delta d_{4}{ }^{*}$	$\Delta d_{1}{ }^{\circ}$	$\Delta d_{2}{ }^{\circ}$	$\Delta d_{3}{ }^{\circ}$	$\Delta d_{4}{ }^{\circ}$
OH	OH	1.494	1.506	1.418	2.487	0.496	-0.025	0.071	-0.941	0.787	-0.010	0.082	-0.964
	CH_{3}	1.494	1.505	1.425	2.486	0.492	-0.024	0.065	-0.940	0.988	-0.009	0.099	-0.985
	F	1.494	1.505	1.426	2.485	0.493	-0.023	0.064	-0.941	0.778	-0.009	0.098	-0.984
	H	1.494	1.505	1.430	2.485	0.491	-0.024	0.061	-0.939	0.783	-0.010	0.072	-0.961
	Cl	1.494	1.505	1.428	2.484	0.493	-0.023	0.063	-0.939	0.778	-0.010	0.074	-0.960
	CN	1.494	1.504	1.434	2.483	0.494	-0.022	0.059	-0.940	0.776	-0.009	0.069	-0.960
CH_{3}	OH	1.496	1.505	1.418	2.488	0.445	-0.028	0.069	-0.933	0.814	-0.009	0.083	-0.964
	CH_{3}	1.495	1.505	1.425	2.489	0.442	-0.028	0.063	-0.933	0.819	-0.008	0.078	-0.966
	F	1.495	1.504	1.427	2.487	0.443	-0.026	0.062	-0.933	0.816	-0.007	0.076	-0.964
	H	1.495	1.504	1.430	2.487	0.442	-0.027	0.059	-0.932	0.818	-0.007	0.074	-0.964
	Cl	1.495	1.504	1.428	2.486	0.443	-0.026	0.061	-0.932	0.815	-0.007	0.076	-0.963
	CN	1.495	1.504	1.435	2.485	0.441	-0.026	0.056	-0.933	0.812	-0.007	0.070	-0.962
F	OH	1.496	1.506	1.417	2.489	0.434	-0.029	0.069	-0.931	1.002	-0.010	0.084	-0.965
	CH_{3}	1.495	1.505	1.424	2.492	0.430	-0.028	0.063	-0.934	0.99	-0.008	0.099	-0.989
	F	1.495	1.505	1.425	2.491	0.432	-0.027	0.063	-0.935	0.83	-0.006	0.079	-0.969
	H	1.495	1.504	1.429	2.491	0.431	-0.027	0.060	-0.934	0.838	-0.005	0.076	-0.970
	Cl	1.495	1.504	1.427	2.490	0.430	-0.026	0.061	-0.934	0.829	-0.006	0.077	-0.968
	CN	1.495	1.504	1.433	2.488	0.430	-0.026	0.057	-0.933	0.828	-0.005	0.073	-0.967

Table 1. Continued

Z	Y	$d_{\text {R }}$				Δd^{\neq}				Δd°			
		$d_{1}{ }^{\text {a }}$	$d_{2}{ }^{\text {b }}$	$d_{3}{ }^{\text {c }}$	d_{4}^{d}	$\Delta d_{1}{ }^{\text {F }}$	$\Delta d_{2}{ }^{\text {F }}$	$\Delta d_{3}{ }^{*}$	$\Delta d_{4}{ }^{*}$	$\Delta d_{1}{ }^{\circ}$	$\Delta d_{2}{ }^{\circ}$	$\Delta d_{3}{ }^{\text {a }}$	$\Delta d_{4}{ }^{\circ}$
H	OH	1.497	1.505	1.418	2.492	0.416	-0.030	0.067	-0.928	1.000	-0.010	0.106	-0.990
	CH_{3}	1.496	1.504	1.425	2.490	0.412	-0.029	0.062	-0.926	0.986	-0.007	0.098	-0.986
	F	1.496	1.504	1.426	2.489	0.411	-0.029	0.061	-0.927	0.977	-0.005	0.095	-0.984
	H	1.496	1.504	1.430	2.490	0.411	-0.029	0.058	-0.927	0.837	-0.006	0.076	-0.967
	Cl	1.496	1.504	1.428	2.489	0.411	-0.029	0.060	-0.927	0.839	-0.005	0.077	-0.967
	CN	1.496	1.503	1.434	2.487	0.409	-0.027	0.055	-0.926	0.832	-0.005	0.072	-0.964
Cl	OH	1.496	1.505	1.417	2.491	0.421	-0.029	0.069	-0.930	1.003	-0.010	0.107	-0.989
	CH_{3}	1.496	1.505	1.424	2.492	0.418	-0.029	0.063	-0.931	0.988	-0.008	0.099	-0.988
	F	1.496	1.504	1.426	2.490	0.419	-0.027	0.061	-0.931	0.987	-0.006	0.096	-0.986
	H	1.496	1.504	1.429	2.489	0.418	-0.028	0.059	-0.929	0.977	-0.005	0.093	-0.984
	Cl	1.496	1.504	1.427	2.490	0.418	-0.027	0.061	-0.931	0.831	-0.006	0.077	-0.967
	CN	1.496	1.504	1.433	2.488	0.416	-0.027	0.056	-0.930	0.833	-0.005	0.073	-0.966
CN	OH	1.497	1.505	1.416	2.496	0.391	-0.032	0.068	-0.923	1.006	-0.010	0.107	-0.993
	CH_{3}	1.497	1.504	1.423	2.495	0.387	-0.031	0.062	-0.922	0.990	-0.007	0.082	-0.972
	F	1.497	1.504	1.424	2.493	0.387	-0.031	0.062	-0.922	0.986	-0.005	0.097	-0.987
	H	1.497	1.504	1.428	2.483	0.385	-0.031	0.058	-0.911	0.985	-0.006	0.095	-0.977
	Cl	1.497	1.504	1.426	2.493	0.385	-0.031	0.060	-0.922	0.985	-0.005	0.096	-0.987
	CN	1.497	1.503	1.433	2.491	0.384	-0.029	0.055	-0.922	0.855	-0.003	0.074	-0.969

${ }^{a} d_{1}=d\left(C^{1}-C^{4}\right) \cdot{ }^{b} d_{2}=d\left(C^{1}-C^{2}\right) .{ }^{c} d_{3}=d\left(C^{2}-C^{d}\right) .{ }^{a} d_{4}=d\left(C^{2} \cdots C^{3}\right)$
charge unit) carried by the Y-ring (Table 2). The formal charges in Table 2 reveal that the positive charge of the Y ring in 3 is similar to that at C^{2}, the positive charge center, and is $c a .10$ times higher than that on the Z-ring (Table 2).

Transition states. In the bridged TS structure (Figure 1), there is no longer resonance delocalization of the po-
sitive charge into the Y-ring; bond lengths of $\mathrm{C}^{2}-\mathrm{C}^{3}$ become stretched by $0.06-0.07 \AA$ and those of $C^{1}-C^{2}$ are contracted by a small amount, ca. $0.03 \AA$ in the TS (Table 1). The Z-ring is nearer to the migration terminus, C^{2} (1.54-1.57 $\AA)$ than to the migration origin, $\mathrm{C}^{1}(1.88-1.99 \AA)$ indicating that the TS is somewhat late along the reaction coordinate,

Table 2. Formal charges of reactant $\left(q_{R}\right)$ and changes, $\Delta q^{*}\left(=q^{+}{ }_{\text {rs }}-q_{R}\right)$ and $\Delta q^{\circ}\left(=q_{p}-q_{R}\right)$ in electronic charge unit

Z	Y	d_{k}				Δq^{*}				Δq°			
		c_{1}	c_{2}	Z-Ph	Y-Ph	$\Delta \mathrm{q}\left(\mathrm{C}^{\text {l }}\right)^{*}$	$\Delta \mathrm{q}\left(\mathrm{C}^{2}\right)^{*}$	$\Delta \mathrm{q}(\mathrm{Z} \cdot \mathrm{Ph})^{+}$	$\Delta \mathrm{q}(\mathrm{Z} \cdot \mathrm{Ph})^{*}$	$\Delta q\left(C^{1}\right)^{\circ}$	$\Delta \mathrm{q}\left(\mathrm{C}^{2}\right)^{\circ}$	$\Delta \mathrm{q}(\mathrm{Z}-\mathrm{Ph})^{\circ}$	$\Delta \mathrm{q}$ (2-Ph)
OH	OH	-0.09	0.32	0.03	0.36	0.25	-0.12	0.23	-0.30	0.37	-0.16	0.09	-0.31
	CH_{3}	-0.10	0.33	0.03	0.34	0.25	-0.14	0.23	-0.28	0.39	-0.18	0.03	-0.23
	F	-0.10	0.34	0.04	0.32	0.25	-0.14	0.23	-0.27	0.37	-0.18	0.10	-0.27
	H	-0.10	0.34	0.04	0.32	0.25	-0.15	0.23	-0.25	0.38	-0.19	0.09	-0.26
	Cl	-0.10	0.34	0.04	0.32	0.25	-0.15	0.23	-0.27	0.37	-0.18	0.10	-0.27
	CN	-0.10	0.35	0.04	0.29	0.26	-0.16	0.23	-0.24	0.37	-0.19	0.10	-0.25
CH_{3}	OH	-0.10	0.33	0.04	0.36	0.25	-0.12	0.23	-0.30	0.39	-0.17	0.07	-0.30
	CH_{3}	-0.10	0.34	0.04	0.34	0.25	-0.14	0.23	-0.27	0.40	-0.19	0.07	-0.27
	F	-0.10	0.34	0.04	0.32	0.25	-0.14	0.23	-0.27	0.40	-0.19	0.07	-0.27
	H	-0.10	0.34	0.04	0.31	0.25	-0.15	0.23	-0.25	0.40	-0.20	0.07	-0.25
	Cl	-0.10	0.34	0.04	0.32	0.25	-0.15	0.23	-0.26	0.40	-0.20	0.07	-0.26
	CN	-0.10	0.35	0.04	0.29	0.25	-0.16	0.23	-0.24	0.40	-0.21	0.07	-0.24
F	OH	-0.10	0.32	0.03	0.38	0.24	-0.11	0.23	-0.31	0.38	-0.16	0.03	-0.24
	CH_{3}	-0.10	0.33	0.03	0.35	0.25	-0.13	0.23	-0.28	0.40	-0.19	0.06	-0.23
	F	-0.10	0.34	0.03	0.33	0.25	-0.14	0.23	-0.27	0.40	-0.19	0.06	-0.28
	H	-0.10	0.34	0.03	0.32	0.25	-0.14	0.23	-0.25	0.40	-0.20	0.07	-0.26
	Cl	-0.10	0.34	0.03	0.33	0.25	-0.14	0.23	-0.26	0.40	-0.19	0.06	-0.27
	CN	-0.10	0.35	0.03	0.30	0.25	-0.15	0.23	-0.24	0.40	-0.20	0.03	-0.25
H	OH	-0.10	0.33	0.04	0.37	0.24	-0.12	0.22	-0.30	0.38	-0.17	0.03	-0.24
	CH_{3}	-0.11	0.34	0.03	0.34	0.25	-0.13	0.22	-0.27	0.40	-0.19	0.03	-0.23
	F	-0.11	0.34	0.04	0.33	0.25	-0.14	0.22	-0.26	0.41	-0.19	0.03	-0.24
	H	-0.11	0.34	0.04	0.32	0.25	-0.15	0.22	-0.25	0.41	-0.20	0.06	-0.25
	Cl	-0.11	0.34	0.04	0.32	0.25	-0.14	0.23	-0.26	0.41	-0.20	0.03	-0.23
	CN	-0.11	0.35	0.04	0.30	0.25	-0.16	0.23	-0.24	0.41	-0.21	0.06	-0.24

Table 2. Continued

Z	Y	$d_{\text {k }}$				Δq^{*}				Δq^{0}			
		c_{1}	c_{2}	Z-Ph	Y-Ph	$\Delta \mathrm{q}\left(\mathrm{C}^{1}\right)^{\text {t }}$	$\Delta \mathrm{q}\left(\mathrm{C}^{2}\right)^{\text {i }}$	$\Delta \mathrm{q}(\mathrm{Z}-\mathrm{Ph})^{+}$	$\Delta \mathrm{q}(\mathrm{Z}-\mathrm{Ph})^{*}$	$\Delta \mathrm{q}\left(\mathrm{C}^{1}\right)^{\circ}$	$\Delta \mathrm{q}\left(\mathrm{C}^{2}\right)^{0}$	$\Delta q(\mathrm{Z}-\mathrm{Ph})^{\circ}$	$\Delta \mathrm{q}(\mathrm{Z}-\mathrm{Ph})$
Cl	OH	-0.10	0.32	0.03	0.37	0.24	-0.12	0.23	-0.30	0.38	-0.17	0.03	-0.24
	CH_{3}	-0.10	0.33	0.03	0.35	0.24	-0.13	0.23	-0.27	0.40	-0.19	0.03	-0.23
	F	-0.10	0.34	0.03	0.33	0.25	-0.14	0.23	-0.27	0.40	-0.19	0.03	-0.23
	H	-0.11	0.34	0.03	0.32	0.25	-0.14	0.23	-0.25	0.41	-0.20	0.06	-0.26
	Cl	-0.10	0.34	0.03	0.33	0.25	-0.14	0.23	-0.26	0.40	-0.20	0.06	-0.27
	CN	-0.11	0.35	0.04	0.30	0.25	-0.15	0.23	-0.24	0.41	-0.21	0.06	-0.25
CN	OH	-0.11	0.32	0.02	0.38	0.24	-0.11	0.22	-0.30	0.38	-0.17	0.02	-0.24
	CH_{3}	-0.11	0.33	0.02	0.36	0.25	-0.12	0.22	-0.27	0.40	-0.19	0.03	-0.24
	F	-0.11	0.34	0.03	0.34	0.25	-0.13	0.22	-0.27	0.41	-0.19	0.03	-0.24
	H	-0.11	0.34	0.03	0.33	0.25	-0.14	0.22	-0.25	0.41	-0.20	0.03	-0.23
	Cl	-0.11	0.34	0.03	0.34	0.25	-0.13	0.22	-0.26	0.41	-0.20	0.03	-0.24
	CN	-0.11	0.35	0.03	0.31	0.25	-0.15	0.22	-0.24	0.42	-0.21	0.05	-0.25

Table 3. Heats of formation (ΔH_{f}), entropies(S), Gibbs free energies of reaction (ΔG°) and of activation (ΔG^{\neq}) in kcal mol ${ }^{-1}$

Z	Y	ΔH_{f}			S			ΔG^{*}	ΔG^{\prime}
		R	TS	P	R	TS	P		
OH	OH	76.98	118.89	117.92	128.71	130.01	132.38	41.52	39.85
	CH_{3}	114.73	154.80	154.27	134.03	134.16	137.43	40.03	38.53
	F	81.43	120.48	119.47	127.97	128.70	131.56	38.83	36.97
	H	124.75	163.31	162.23	123.82	124.24	127.35	38.43	36.43
	Cl	119.77	158.29	157.26	130.76	131.27	134.22	38.37	36.46
	CN	163.23	199.70	198.70	132.58	132.95	135.95	36.36	34.47
CH_{3}	OH	112.87	156.64	154.27	133.39	135.08	137.43	43.27	40.20
	CH_{3}	150.61	192.58	190.09	138.98	138.82	141.90	42.02	38.61
	F	117.29	158.25	155.83	132.56	133.53	136.10	40.67	37.48
	H	160.62	201.09	198.61	128.63	129.02	131.86	40.35	37.03
	Cl	155.63	196.07	193.63	135.24	136.28	139.11	40.13	36.85
	CN	199.07	237.48	235.07	137.49	137.71	140.68	38.34	35.05
F	OH	78.48	123.18	119.47	127.57	128.17	131.56	44.52	39.80
	CH_{3}	116.27	159.08	155.83	133.00	132.60	136.10	42.93	38.64
	F	83.08	124.93	121.94	126.79	126.94	130.31	41.81	37.81
	H	126.38	167.65	164.59	122.67	122.58	125.98	41.30	37.22
	Cl	121.40	162.72	159.70	129.49	129.58	132.95	41.29	37.27
	CN	164.98	204.27	201.28	131.43	131.30	134.65	39.33	35.34
H	OH	121.36	166.64	162.23	123.33	123.74	127.35	45.16	39.67
	CH_{3}	159.11	202.56	198.61	129.30	128.10	131.86	43.81	38.74
	F	125.84	168.35	164.59	122.56	122.66	125.98	42.48	37.73
	H	169.16	211.12	207.40	118.46	118.26	121.95	42.02	37.20
	Cl	164.17	206.15	202.45	125.35	125.30	128.73	41.99	37.27
	CN	207.67	247.65	243.96	127.21	126.94	130.75	40.06	35.23
Cl	OH	116.29	161.56	157.26	130.28	130.74	134.22	45.13	39.80
	CH_{3}	154.07	197.47	193.63	135.63	135.06	139.11	43.57	38.52
	F	120.86	163.28	159.70	129.50	129.55	132.95	42.41	37.81
	H	164.17	206.03	202.45	125.35	125.19	128.73	41.91	37.27
	Cl	159.19	201.08	197.55	132.21	132.18	135.60	41.90	37.35
	CN	202.74	242.60	239.10	134.10	133.91	137.31	39.92	35.40
CN	OH	157.62	205.14	198.70	132.04	131.96	135.95	47.54	39.91
	CH_{3}	195.43	241.03	235.07	137.43	136.21	140.68	45.96	38.67
	F	162.32	207.00	201.28	131.29	130.90	134.65	44.80	37.96
	H	205.61	249.66	243.96	127.17	126.59	130.75	44.22	37.28
	Cl	200.64	244.78	239.10	133.98	133.50	137.31	44.28	37.47
	CN	244.30	286.42	281.09	135.92	135.23	139.29	42.33	35.79

[^0]and both bond cleavage and bond making are nearly complete.

In accordance with these bond length changes accompanied with the activation process, the positive charge is now transferred to the Z-ring from the Y-ring which is now almost devoid of the positive charge; reference to Table 2 reveals that the positive charge increases at C^{2} and Z-ring whereas it becomes depleted at C^{1} and Y -ring in the TS. In other words, electronic charge is transferred by the migrating ring (Z) toward the remaining phenyl ring (Y) in the TS. Thus in quite contrast to the trend of stability of the initial state, 3 , which is stabilized by a stronger donor $\mathrm{Y}\left(\delta \sigma_{\mathrm{Y}}\right.$ $<0)$, the TS is stabilized by a stronger acceptor $\mathrm{Y}\left(\delta \sigma_{\mathrm{Y}}>0\right)$.

Energetics

The heats of formation, ΔH_{f}, entropies, S , and Gibbs free energy of reaction, ΔG^{o}, and of activation, $\Delta G^{ \pm}$, are summarized in Table 3. The barriers to rotation around the $\mathrm{C}^{2}-$ C^{3} bond in the initial state, 3, are shown in Table 4. The

Table 4. Rotational barrier $\left(\Delta H^{*}=\Delta H_{f}\left(90^{\circ}\right)-\Delta H_{f}(\mathrm{R})\right)$ of the Yring in kcal mol ${ }^{\prime}$

Z	Y	ΔH^{\neq}
OH	OH	11.60
	CH_{3}	9.85
	F	9.68
	H	9.04
	Cl	9.13
	CN	7.80
CH_{3}	OH	11.48
	CH_{3}	9.74
	F	9.58
	H	8.61
	Cl	9.03
	CN	7.70
F	OH	11.91
	CH_{3}	10.11
	F	9.94
	H	8.93
	Cl	9.38
	CN	8.01
H	OH	11.62
	CH_{3}	9.87
	F	9.70
	H	8.72
	Cl	9.15
	CN	7.80
Cl	OH	11.83
	CH_{3}	10.05
	F	10.23
	H	8.87
	Cl	9.32
	CN	8.34
CN	OH	12.14
	CH_{3}	10.32
	F	10.13
	H	9.10
	Cl	9.56
	CN	8.17

data in Table 4 show that a stronger donor Y and a stronger acceptor Z have a higher barrier to rotation due to the more stabilized (on-form) resonance structure, 3'. The barrier heights of $8-12 \mathrm{kcal}_{\mathrm{kr}}{ }^{-1}$ may be ascribed mostly to the resonance structure, 3^{\prime}, in which partial double bond is formed between C^{2} and C^{3}, albeit steric effect is, no doubt, responsible partially.

Since the initial state, 3, is stabilized by a stronger donor $\mathrm{Y}\left(\delta \sigma_{Y}<0\right)$ and a stronger acceptor $\mathrm{Z}\left(\delta \sigma_{Z}>0\right)$ whereas the TS (TS3) is stabilized by a stronger acceptor $Y\left(\delta_{\gamma}>0\right)$ and a stronger donor $\mathrm{Z}\left(\delta_{Z}<0\right)$, the activation free energy, ΔG^{\neq}, becomes the highest for a stronger donor $\mathrm{Y}\left(\delta \sigma_{Y}<0\right)$ coupled with a stronger acceptor $\mathrm{Z}\left(\delta \sigma_{\mathrm{Z}}>0\right)$ and the lowest for a stronger acceptor $Y\left(\delta \sigma_{y}>0\right)$ coupled with a stronger donor $\mathrm{Y}\left(\delta \sigma_{\mathrm{Y}}<0\right)$.

Linear Free Energy Relationships

The Gibbs free energies of activation are used to derive the Hammett's reaction constants, ρ^{+}, using eq. (7) with σ^{+} due to strong resonance effect. ${ }^{11}$ In order to assess resonance contribution, the substituent effects are further dissected into inductive (or field), 4, and resonance, R, parts by fitting the free energy data to the Swain-Lupton ${ }^{12}$ dual substituent parameter (SLDSP) equation, ${ }^{13}$ eq. (8). The results of these linear free energy relationship analyses are presented in Table 5. We note that as expected from the above discussion, $\rho_{Z^{+}}$, is negative while $\rho_{Y}{ }^{+}$is positive reflecting positive and negative charge development in the Z and Y-rings, respectively, in the TS. Again the importance of resonance contribution is demonstrated by the greater magnitude of r, the ratio of r / f ranging from 1.3 to 1.5 . Since the Z-ring is directly linked to both the migration origin (C^{1}) and migration terminus (C^{2}) in the TS, the susceptibility of resonance development of the positive charge to para-substituents is relatively large, 1.5 (Z-ring) vs 1.3 (Y-ring). It is to be noted that in the Z-ring the positive charge is resonance delocalized whereas in the Y-ring resonance structure is destroyed in the TS.

Table 5. Hammett type ρ^{+}values and dual substituent parameter analyses

	$\rho_{\mathrm{Y}}{ }^{+a}$	f	r	r / f^{h}
$\mathrm{Z}=\mathrm{OH}$	2.44	1.02	1.31	1.28
$\mathrm{Z}=\mathrm{CH}_{3}$	2.36	1.10	1.24	1.13
$\mathrm{Z}=\mathrm{F}$	2.45	0.94	1.34	1.43
$\mathrm{Z}=\mathrm{H}$	2.43	1.03	1.30	1.26
$\mathrm{Z}=\mathrm{Cl}$	2.46	0.96	1.34	1.40
$\mathrm{Z}=\mathrm{CN}$	2.47	0.92	1.35	1.47
		$\rho_{\mathrm{YZ}}=0.03$		
	$\rho_{\mathrm{Z}}{ }^{+a}$	f	r	r / f^{h}
$\mathrm{Y}=\mathrm{OH}$	-2.83	-1.10	-1.54	1.40
$\mathrm{Y}=\mathrm{CH}$	-2.76	-0.85	-1.56	1.84
$\mathrm{Y}=\mathrm{F}$	-2.80	-1.03	-1.54	1.50
$\mathrm{Y}=\mathrm{H}$	-2.70	-0.90	-1.50	1.67
$\mathrm{Y}=\mathrm{Cl}$	-2.78	-1.03	-1.52	1.48
$\mathrm{Y}=\mathrm{CN}$	-2.78	-0.93	-1.55	1.67
		$\rho_{\mathrm{YZ}}=0.03$		

[^1]\[

$$
\begin{array}{r}
\delta \log k=-\delta \Delta G^{*} / 2.303 \mathrm{RT}=\rho^{+} \sigma^{+} \\
\delta \log k=-\delta \Delta G^{*} / 2.303 \mathrm{RT}=f \not \subset+r R \tag{8}
\end{array}
$$
\]

Strong dependence of the resonance structure, $\mathbf{3}^{\prime}$, on the para-substituent is shown by derived $\rho_{\mathrm{Y}}{ }^{+}(\cong 1.7)$ and $r / f(\cong$ 7) values using rotational barriers (in ΔH^{\neq}instead of ΔG^{\ddagger}) in Table 4. Here again, the resonance structure is broken in the TS, the 90°-rotated state.

It is also interesting to note that the ratio of r / f for the benzilic rearrangements, eq. (1), ranges from 0.7 to 0.8 reflecting the predominant inductive (or field) effect over the resonance effect. ${ }^{24}$ In fact for this system, no important resonance structure can be assigned either in the initial state or in the bridged transition state. A quite surprising result emerged in this work is that the cross-interaction constant, ρ_{YZ}, exhibits vanishingly small value ($\rho_{\mathrm{yz}}=0.03$), eq. (9). The bridged TS structure, (Figure 1), which is a late one, i.e.,

$$
\begin{equation*}
\log \left(k_{\mathrm{Y} /} / k_{\mathrm{HH}}\right)=2.44 \sigma_{\mathrm{Y}}{ }^{+}-2.77 \sigma_{\mathrm{Z}}{ }^{+}+0.03 \sigma_{\mathrm{Y}}{ }^{+} \sigma_{\mathrm{Z}}{ }^{+} \tag{9}
\end{equation*}
$$

the migration of Z-ring is nearly complete, convinces us that the interaction between the two substituents, Z and Y, must be very strong. The negligibly small magnitude of ρ_{Yz} obtained therefore suggests strongly that the interaction of the two substituents within the initial state, 3 , is also very strong. This latter suggestion is not unreasonable in view of the strong positive charge delocalization in the initial state. The strong interactions in the TS, (large $I^{\neq}{ }_{\mathrm{rz}}$), as well as in the initial state, $\left(\mathrm{I}^{\circ}{ }_{\mathrm{YZ}}\right)$, may well lead to a negligible change in the interaction ($\Delta \mathrm{I}^{+}{ }_{\mathrm{Y} 2}$) on going from the initial to transition state and hence leads to a negligible $\rho_{\mathrm{yz}}{ }^{8}$ eq. (5). It is instructive to compare the magnitude of ρ_{Yz} for the series of gas-phase reactions theoretically investigated using the AM1 method in this laboratory: (i) For benzilic (anionic) rearrangements, $\rho_{\mathrm{YZ}}=-0.48$. ${ }^{5}$ In structure 1 of eq. (1), there is no significant resonance delocalization effect. (ii) For azibenzil (neutral) rearrangements, $\rho_{\mathrm{YZ}}=-0.53 .{ }^{6}$ In structure 2 of eq. (2), there is weak resonance effect due to the vicinal $\mathrm{n}-\sigma^{*}$ interaction, $\mathbf{2}^{\prime}$. There is a reversal of charge on going from the reactant (negative charge on Z -ring and positive charge on Y-ring) to the TS (positive charge on Z-ring and negative charge on Y-ring) which requires a relatively large

structural reorganization. (iii) For (cationic) rearrangements in protonated ketones, $\rho_{\mathrm{Yz}}=0.03$. There is a strong resonance delocalization of positive charge in 3^{\prime}.
This comparison of the $\rho_{\gamma z}$ values for these three rear-
rangement processes together with the extent of resonance contribution in the initial state provides therefore evidence for the proportionality relation between the magnitude of ρ_{yz} and the change in the intensity of interaction, $\Delta \mathrm{I}^{+}{ }_{\mathrm{YZ}}$, given by eq. (5). ${ }^{8}$

Acknowledgment. We thank Inha University for support of this work.

References

1. (a) Grovenstein, Jr., E.; Williams, Jr., L. P. J. Am. Chem. Soc. 1961, 83, 412, 2537. (b) Zinmerman, H. E.; Zweig, A. J. Am. Chem. Soc. 1961, 83, 1196. (c) Grovenstein, Jr., E.; Lu, P-C. J. Org. Chem. 1982, 47, 2928.
2. (a) Slaugh, L. H. J. Am. Chem. Soc. 1959, 81, 2262. (b) Kochi, J. K.; Krusic, P. J. J. Am. Chem. Soc. 1969, 91, 3940.
3. Lancelat, C. J.; Cram, D. J.; Schleyer, P. v. R. in Carbonium Ions, Olah, G. A.; Schleyer, P. v. R. Eds.; Wiley: New York, 1972; vol III.
4. (a) Olah, G. A.; Spear, R. J.; Forsythe, D. A. J. Am. Chem. Soc. 1976, 98, 6284. (b) Olah, G. A.; Singh, B. P. J. Am. Chem. Soc. 1984, 106, 3265.
5. Lee, I.; Lee, D.; Lee, J. K.; Kim C. K.; Lee, B.-S. J. Chem. Soc., Perkin Trans. 2 1996, 2519.
6. Kim, C. K.; Lee, I. Bull. Korean Chem. Soc. 1997, 18, 395.
7. (a) Lee, I. Chem. Soc. Rev. 1990, 19, 317. (b) Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57 . (c) Lee, I. Chem. Soc. Rev. 1995, 24, 223.
8. Lee, I. J. Phys. Org. Chem. 1992, 5, 736.
9. (a) Raaen, V. F.; Collins, C. J. J. Am. Chem. Soc. 1958, 80, 1409. (b) Kendrick, L. W.; Benjamin, B. M.; Collins, C. J. J. Am. Chem. Soc. 1958, 80, 4057. (c) Collins, C. J.; Bowman, N. S. J. Am. Chem. Soc. 1959, 81, 3614.
10. (a) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. P.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902. (b) MOPAC 6.0 Program, available from Quantum Chemistry Program Exchange(QCPE) No. 506.
11. Okamoto, Y.; Brown, H. C. J. Org. Chem. 1957, 22, 487.
12. Swain, C. G.; Lupton, E. C. J. Am. Chem. Soc. 1968, 90, 4328.
13. (a) Lee, I.; Sohn, S. C. Bull. Korean Chem. Soc. 1986, 7, 321. (b) Taft, R. W.; Lewis, I. C. J. Am. Chem. Soc. 1959, 81, 5343. (c) Ehrenson, S.; Brownlee, R. T. C.; Taft, R. W. Prog. Phys. Org. Chem. 1973, 10, 1. (d) Lee, 1.; Cheun, Y. G.; Yang, K. I. Comput. Chem. 1982, 3, 565 .
14. Calculated from the data in ref. 5 .
15. (a) Brunck, T. K.; Weinhold, F. J. Am. Chem. Soc. 1979, 101, 1700. (b) Weinhold, F.; Brunck, T. K. J. Am. Chem. Soc. 1976, 98, 3745. (c) Brunck, T. K.; Weinhold, F. J. Am. Chem. Soc. 1976, 98, 4392.

[^0]: ${ }^{*}$ In cal $\cdot \mathrm{mol}^{1} \mathrm{~K}^{1}$ at 298 K

[^1]: ${ }^{a} \log \left(k / k_{\mathrm{H}}\right)=-\left(\Delta \mathrm{G}^{*} / 2.303 \mathrm{RT}\right)=\rho^{+} \sigma^{*}$, Regression coefficients ≥ 0.99.
 ${ }^{h} \log \left(k / k_{\mathrm{H}}\right)=f \mathfrak{q}+r$, Regression coefficients ≥ 0.98

