DOI QR코드

DOI QR Code

Syntheses of Polysiloxane-Bridged Dinuclear Metallocenes and Their Catalytic Activities

  • Published : 1997.06.20

Abstract

The polysiloxane-bridged dinuclear metallocenes $[(SiMe_2O)_n-SiMe_2(C_5H_4)_2][(C_9H_7)ZrCl_2]_2$ (n=1 (7), 2 (8), 3 (9)) have been generated as a model complex for the immobilized metallocene at silica surface by treating the respective disodium salts of the ligands with 2 equivalents of $(C_9H_7)ZrCl_3$ in THF. All three complexes are characterized by $^1H$ NMR and measurement of metal content through ICP-MS. It turned out that the values of ${\Delta}{\delta}=[{\delta}_d-{\delta}_p]$, the chemical shift difference between the distal $({\delta}_d)$ and proximal $({\delta}_p)$ protons, for the produced dinuclear compounds (0.47 for 7, 0.49 for 8, and 0.5 for 9) were larger than the Δδ value of the known ansa-type complex holding the same ligand as a chelating one, that is just the opposite to the normal trend. In order to compare polymerization behavior of the dinuclear metallocene with the corresponding mononuclear metallocene, (Cp)$(C_9H_7)ZrCl_2$ was separately prepared. To investigate the catalytic properties of the dinuclear complexes and mononuclear metallocenes ethylene polymerization has been conducted in the presence of MMAO. The polymerization results display the typical activity dependence on polymerization temperature for all complexes. The most important feature is that the polymers from the dinuclear metallocenes represent enormously improved molecular weight compared with the polymer from the corresponding mononuclear metallocene. In addition, the influence of the nature of the bridging ligand upon the reactivities of the dinuclear metallocenes has also been observed.

Keywords

References

  1. Adv. Organomet. Chem. v.18 Sinn, H.;Kaminsky, W.
  2. Macromol. Rapid Commun. v.4 Kaminsky, W.;Miri, M.;Sinn, H.;Woldt, R.
  3. J. Am. Chem. Soc. v.106 Ewen, J. A.
  4. Macromolecules v.21 Ishihara, N.;Kuramoto, M.;Uoi, M.
  5. Macromolecules v.25 Yasuda, H.;Foro, M.;Yamamoto, H.
  6. Macromolecules v.29 Deng, H.;Soga, K.
  7. Angew. Chem. Int. Ed. Engl. v.34 Brintzinger, H. H.;Fischer, D.;Mulhaupt, R.;Rieger, B.;Waymouth, R. M.
  8. J. Organomet. Chem. v.479 Mohring, P. C.;Coville, N. J.
  9. Organometallics v.15 Resconi, L.;Jones, R. L.;Rheingold, A. L.;Yap, G. P. A.
  10. J. Am. Chem. Soc. v.117 Leclerc, M. K.;Brintzinger, H. H.
  11. Organometallics v.13 Spaleck, W.;Kuber, F.;Winter, A.;Rohrman, J.;Bachman, B.;Antberg, M.;Dolle, V.;Paulus, E. F.
  12. Organometallics v.13 Dorer, B.;Prosenc, M. M.;Rief, U.;Brintzinger, H. H.
  13. Proceedings of the Third International Business Forum on Specialty Polyolefins SPO'95 Razavi, A.;Vereecke, D.;Peters, L.;Hessche, D. V.;Den Dauw, K.;Nafpliotis, L.;de Froimont, Y.
  14. Macromol. Rapid Commun. v.17 Lee, D. H.;Yoon, K. B.;Lee, E. K.;Noh, S. K.;Lee, C. S.;Huh, W. S.
  15. Proceedings of the International Congress on Metallocene Polymers Metallocenes'95 Lee, D. H.;Noh, S. K.;Huh, W. S.
  16. J. Organomet. Chem. v.518 Noh, S. K.;Byun, G. G.;Lee, C. S.;Lee, D. H.;Yoon, K. B.;Kang, K. S.
  17. Macromol. Rapid Commun. v.16 Lee, D. H.;Yoon, K. B.;Lee, E. K.;Noh, S. K.;Byun, G. G.;Lee, C. S.
  18. Organometallics v.8 Reddy, K.;Peterson, J. L.
  19. Organometallics v.11 Cacciola, J.;Reddy, K.;Peterson, J. L.
  20. Inorg. Chem. v.32 Cuenca, T.;Flores, J. C.;Gomez, R.;Gomez-Sal, P.;Parra-Hake, M.;Royo, P.
  21. Organometallics v.12 Ciruelos, S.;Cuenca, T.;Flores, J. C.;Gomez, R.;Gomez-Sal, P.;Royo, P.
  22. J. Organomet. Chem. v.460 Jungling, S.;Mulhaupt, R.;Plenio, H.
  23. Organometallics v.13 Cano, A.;Cuenca, T.;Gomez-Sal, P.;Royo, B.;Royo, P.
  24. J. Organomet. Chem. v.489 Shaw, S. L.;Morris, R. J.;Huffman, J. C.
  25. J. Orgnaomet. Chem. v.518 Ushioda, T.;Green, Malcolm L. H.;Haggit, J.;Yan, X.