DOI QR코드

DOI QR Code

A Kinetic Study for the Reaction of 2,4-Dinitrophenyl Benzoate with Secondary Cyclic Amines

  • Published : 1997.05.20

Abstract

Apparent second-order rate constants (kapp) have been measured spectrophotometrically for the reaction of 2,4-dinitrophenyl benzoate (DNPB) with 6 secondary cyclic amines in H2O containing 20 mole% DMSO at 25.0±0.1 ℃. The Bronsted-type plot (log kapp vs. pKa) shows a break at pKa near 9.1, e.g. two straight lines with βapp values of 0.67 and 0.44 for the low basic (pKa < 9.1) and the highly basic (pKa > 9.1) amines, respectively. Using an estimated k2 value of 3×109 sec-1, all the other microconstants (k1, k-1 and K) involved in the present aminolysis have been calculated. The k value decreases with increasing the basicity of amines while k1 and K values increase with increasing the amine basicity, as expected. Good linear Bronsted-type plots have been obtained for these microconstants of the present aminolysis of DNPB. The magnitudes of the slope of the Bronsted-type plots, k1 and k-1 have been calculated to be 0.43 and - 0.24, respectively, indicating the k-1 step is about two folds less sensitive than the k1 step to the amine basicity. The K value has been calculated to be 0.66, which appears to be much smaller than the one for other aminolyses showing general base catalysis. The small K value has been attributed to the absence of general base catalysis in the present aminolysis of DNPB.

Keywords

References

  1. Adv. Phys. Org. Chem. v.5 Johnson, S. L.
  2. Catalysis in Chemistry and Enzymology Jencks, W. P.
  3. Mechanism of Catalysis from Protons to Proeins Bender, M. L.
  4. The Bioorganic Chemistry of Enzyme Catalysis Bender, M. L.;Bergeron, R. J.;Komiyama, M.
  5. Adv. Phys. Org. Chem. v.11 Fife, T. H.
  6. Acc. Chem. Res. v.26 Fife, T. H.
  7. J. Org. Chem. v.61 Bentley, T. W.;Llewellyn, G.;McAlister, J. A.
  8. Chem. Rev. v.60 Bender, M. L.
  9. J. Acc. Chem. Res. v.16 McClelland, R. A.;Sandtry, L. J.
  10. Acc. Chem. Res. v.14 Capon, B.;Ghosh, A. K.;Grieve, D. M. A.
  11. J. Am. Chem. Soc. v.111 Buncel, E.;Um, I. H.;Hoz, S.
  12. J. Am. Chem. Soc. v.109 Ba-Saif, S.;Luthra, A. K.;Williams, A.
  13. J. Am. Chem. Soc. v.106 D'Rozario, P.;Smyth, R. L.;Williams, A.
  14. J. Am. Chem. Soc. v.110 Bourne, N.;Chrystiuk, E.;Davis, A. M.;Williams, A.
  15. J. Am. Chem. Soc. v.115 Stefanidis, D.;Cho, S.;Dhe-Paganon, S.;Jencks, W. P.
  16. J. Am. Chem. Soc. v.116 Hengge, A. C.;Hess, R. A.
  17. J. Am. Chem. Soc. v.116 Hengge, A. C.;Edens, W. A.;Elsing, H.
  18. J. Am. Chekm. Soc. v.90 Jencks, W. P.;Gilchrist, M.
  19. J. Am. Chem. Soc. v.99 Gresser, M. J.;Jencks, W. P.
  20. J. Org. Chem. v.58 Castro, E. A.;Ibanez, F.;Santos, J. G.;Ureta, C.
  21. J. Chem. Soc., Perkin Trans. v.2 Castro, E. A.;Ibanez, F.;Santos, J. G.;Ureta, C.
  22. J. Org. Chem. v.55 Castro, E. A.;Ureta, C.
  23. J. Chem. Res. no.M Um, I. H.;Kwon, H. J.;Kwon, D. S.
  24. Advances in Linear Free Energy Relationships Chapman, N. B.(Ed.);Shorter, J.(Ed.)
  25. Bio. Chem. v.11 Hubbard, C. D.;Kirsch, J. F.
  26. The Proton in Chemistry Bell, R. P.