ences and Technology for access to the Cray-C90 super computer.

References

1. Lee, S. II.: Lee, II.: I'ak, II.: Rasaiah. I. C. Buhl. Kor: (hom. Soc 1996, 17, 735.
2. (a) Green, M. S. J. Chem. Phys. 1951, I9, 249. (b) ihid. 1952, 20, 1281. (c) ihid. 1954, 22. 398. (d) Kuho, R. J. Phys. Soc. Japan 1957, 12, 570
3. Moon, C. B.: Moon, (I. K.: Lee, S. II. Bull. Kor. Chem. Soc. 1991, 12, 309.
4. Lee, S. 11.: Moon, G. K.: Choi, S. G. Bull. Kor: Chem. Soc: 1991, 12, 315.
5. (a) Jorgensen, W. L.: Chandrasekhar. J.: Madura, I. D): linpey, R. W: Klein M. L. /. Chem. Phws. 1983, 79. 926. (b) Torgensen W. L.: Madura T. D. Mol. Phus. 1985, 56. 1381.
6. Tans D. J.: Hoover W. G.: Failor B. H.: Moran B.: Ladd A. J. C. Phas. Rev. 1. 1983, 28, 1016. Simmons A. D.: Cummings P. T. Chem. Phbs Lett. 1986, /29. 92.
7. Ryckaer . T. P.: Bellemans A. Discuss. Faroday Soc. 1978, 66, 95.
8. Wielopolsky P. A: Smith Г.. R. I. (Them. Phws. 1986, 84.6940.
9. Allen M. P.: Tildeskey D. J. Computer Simulation of i iquids: Oxford, Oxtord Univ: l'ress.: 1987.
10. Andersen H. C. . I. Chem. Phos. 1983, 52, 24
11. Chynoweth S.: Klomp U. C.: Scales L. E. Comput. Phys. ('omminh 1991, 62, 297
12. Chynoweth S': Klomp U. C.: Michopoulos Y. J. Chem. Phys 1991, 95, 3024
13. Berker A.: Chynoweth S.: Klomp U. C.: Michopoulos Y. J. (hom. Soc., Faraday Trans. 1992, 88, 1719.
14. White D. N. I.: Boville M. I. J. Chem. Soc. Perkin Trans. 1977, 2, 1610
15. Gear C. W. Numerical Initial Ialue Problems in Ordinary Differential Equation; Englewood Clitls NT, Prentice-IIall: 1971
16. Fdberg R.: Fxams D. T.: Morisis G. P. J. (Chem. Phys. 1986, 84, 6933
17. Stephan K.: Lucas K. Iiscosity of Dense Fhuids; Plenum: New York: 1979
18. Weast R. C: A stle M. I. CRC I/andbook of Chemistm and Phesics, 63rd ed: CRC press: Booa Ranton, 19821983.
19. Marechal G..: Ryckaert I. P. (Wem. Phys. Lett. 1983, 101. 548.
20. Edherg R.: Morriss G. P.: Гvans D. J. J. Chem. Phus. $1987,86,4555$.
21. I.eeS. H.: Cummings P. T. Mol. Sim. 1996, 16, 229.
22. Chynoweth S.: Klomp U. C.: Michopoulos Y. J. Chem. Phys. 1991, 95, 3024
23. Mundy C. J.: Siepman I. I.: Klein M. L. J. Chem. Phys. $1995,102,3376$.
24. Cui S. T.: Cummings P. I.: Cochran II. D. J. Chem. Phys 1996, 104, 255.

The Reaction of 6,7-Dichloro-5,8-quinoxalinedione with Aromatic and Aliphatic Dinucleophiles and Molecular Modeling Study of Their Intercalation Complexes

Hee-Won Yoo ', Myung-Eun Suh , Kye Jung Shin, and Sang-Woo Park*
Division of Wedicinal (hemist, ('ollege of Pharmacy, Ewha Womans linwersity, Seom 120-750). Korea Division of Applied Science, Korea Institute of Science and Techmologe, Seoul 120-750. Korea
Recewed Nowember 7, 1996

Abstract

The angular and planar heterocyclic compounds containing nitrogen, sulfur and oxygen were synthesized by reaction of 6,7 -dichloro- 5,8 -quinosalinedione with aromatic and aliphatic dinucleophiles. Nucleophilic reactivity was somewhat different between 2,3-dichloro-1,4-naphthoquinone and 6,7-dichloro-5,8-quinolinedione with dimucleophiles. The distribution of electron in heterocycle appeared to contribute to this difterence. The intercalation comple of planar heteroeyclic compound between $\mathrm{GC} / \mathrm{GC}$ base pairs showed the optimum intcrealation but the intercalation of angular heterocyelic compound was not good. Thus. the planar compound was expected to have antitumor aclivity

Introduction

The reaction of 2,3 -dichloro-1,4-naphthoquinone and 6,7 -dichloro- 5,8 -quinolinedione with nueleophiles was investigated for a long time. Ilowever, the reaction of the analoguc 6,7-dichloro-5,8-quinowalinedione (1) with nu-
cleophiles was rarely reported because the total yield of $\mathbf{1}$ was only 1.1%.' The new method, in which the total yield was 27%, was developed reeently. Dicharo compound showed the diverse reactivity with nueleophiles and produced various heterocyclic compounds." We synthesized heterocyeles by reaction of \mathbf{I} with aromatic and aliphatic dinu-
cleophiles containing nitrogen, sulfur and oxygen. The reaclivity of 1 was compared to that of 2,3 -dichloro- 1,4 -naphthoquinone and 6,7-dichloro-5,8-quinolinedione to examine the effect of nitrogen in the heterocycle. It had been reported the number of nitrogen in heterocycles and ring sice vere important for antitumor activity. The denvatives of 1 had more than two nitrogens and $3-4$ rings. Intercalation complexes between the derivatives and $\mathrm{GC} / \mathrm{GC}$ base pairs were showed by molecular modeling for expecting antitumor activity.

Experimental

Materials and Methods. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$ - NMR spectra were recorded on a 300 Milz Varian Gemini nmr speetrometer. Samples whe dissolved in DMSO-d ${ }_{6}$. Mass spectra were obtained on a Lewlett Packard $5790(70 \mathrm{eV})$ (GC-Mass and GC-Mass 5985 B . Elemental analyses were performed using l'erkin-Elmer Model 240C elementary analyer. IR spectra were recorded on a Perkin Flmer Model 1710 spectrometer and Mattson Instruments Inc.. The majority of reagents were purchased from Aldrich Chemical Company.

6-Chloro-5-hydroxy-12H-pyrazino[2,3-a]phenothiazine (3). 6,7-Dichloro-5,8-quinoxalinedione (1) (100 $\mathrm{mg}, 0.44 \mathrm{mmol})$ was dissolved in boiling ethanol (20 mL). 2 -Aminothiophenol (0.07 mL . 0.53 mmol) was added to this hot solution and the reaction mixture was rethlued for 1 h. The solvent was evaporated under reduced pressure and ethanol was added to this residue. The precipitate was collected by filtration and loaded on a silica gel column (Kieselgel 9385, 230-400 mesh) eluted with chlorolomm/acetone (9: 1): yield. 110 mg (84.6%): mp 222-225 ${ }^{\circ} \mathrm{C}^{\prime}$ ' II NMR $\delta 7.78$ ($\mathrm{m}, 2 \mathrm{H}, H-9,10$), 8.06 (dd, $1 \mathrm{H}, \mathrm{T}=\mathrm{mot}$ resolved, $H-11), 8.23(\mathrm{dd}, 1 \mathrm{H}, H-8), 9.21$ (dd, $1 \mathrm{H}, H-2$ or 3$), 9.25$ (dd, 111. /I- 2 or 3), 9.41 (s. 111, OH), 10.65 (s, 111, Wh): IR (KBr) $3420,3040 \mathrm{~cm}^{-1}$: $\mathrm{MS} \mathrm{m} /$. For $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{OS}^{3+\mathrm{Cl}} 301$: m / z for $\mathrm{C}_{14} \mathrm{I}_{8} \mathrm{~N}_{3} \mathrm{Os}^{3-} \mathrm{Cl} 303$.

6-Chloro-5-hydroxy-12H-pyrazino[2,3-a]phenoxazine (4). 6.7-Dichlor-5,8-quinoxalinedione (1) (100 mg , 0.44 mmol) was dissolved in boiling ethanol (20 mL). 2 Aminophenol ($60 \mathrm{mg}, 0.53 \mathrm{mmol}$) was added to this hot solution and the reaction misture was reflused for l h . The solvent was evaporated under reduced pressure and ethanol was added to the residuc. The precipitate was collected by filtration: yield. $100 \mathrm{mg}(83.3 \%): \mathrm{mp}, 223-225{ }^{\circ} \mathrm{C}:{ }^{1} 11$ NMR $\delta 7.11(\mathrm{~m}, 2 \mathrm{H}, H-9,10), 7.20(\mathrm{dd}, \mathrm{IH}, J=5.85 \mathrm{H} \%, H-$ $8), 7.53(\mathrm{dd}, 1 \mathrm{II}, J=5.98 \mathrm{llz}, M-11), 8.56(\mathrm{~s}, 1 \mathrm{H}, O H), 8.98$ $(\mathrm{s}, 2 \mathrm{H}, \mathrm{H}-2,3), 10.86(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}): \mathrm{IR}(\mathrm{KBr}) 3480 \mathrm{~cm}^{-1}: \mathrm{MS}$ $m z$ for $\mathrm{C}_{41} \mathrm{H}_{s} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{3} \mathrm{Cl} 477: m z$ for $\mathrm{C}_{14} \mathrm{Il}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{36} \mathrm{Cl} 479$ (TFAA derivalive).

6-Acetamido-7-(4-aminophenoxy)-5,8-quinoxalinedione (5). 4 -Aminophenol ($260 \mathrm{mg}, 2.39 \mathrm{mmol}$) was added to a suspersion of 6-acetamido-7-chloro-5,8-quinoxalinedione ($300 \mathrm{mg}, 1.3 \mathrm{mmol}$) in ethanol $(20 \mathrm{mI}$) at 70 " C and the reation mivilue was refluxed for 30 min . Alter cooling, the precipitate was collected by filtration and reerystallized from ethanol: yield, $350 \mathrm{mg}(89.7 \%)$, mp $184-$ $186{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\delta 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{4}\right), 6.64(\mathrm{~d}, 2 \mathrm{H}, J=$ $\left.7.7 \mathrm{ILz}, M-3^{\prime}, \bar{y}^{\prime}\right), 6.81\left(\mathrm{~d}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, I /-2^{\prime}, 6^{\prime}\right), 8.98(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{H}-2,3), 9.13(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCOCH}, \mathrm{IR}$
(KBr) $3280,3200,1660,1630 \mathrm{~cm}^{-1}$.
2-Methoxy-6-chloro-5-hydroxy-12H-pyrazino[2,3a]phenazine (6). 6,7-Dichloro-5.8-quinoxalinedione (1) (100 mg .0 .44 mmol) was dissolved in boiling cthanol (20 mL). 4-Methoxy-1,2-phenylenediamine $2 \mathrm{HCl}(140 \mathrm{mg}$, 0.65 mmol) was added to this hot solution and the reaction misture was reflused for 30 min . After cooling, the precipitate was collected by filtration and recrystallized from ethanol: yield, $120 \mathrm{mg}(85.7 \%): \mathrm{mp}>300{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR 88.96 (s, 2H,H-9,10), $7.99(\mathrm{~d}, 1 \mathrm{H}, H-1), 7.38(\mathrm{~d}, 1 \mathrm{H}, H-2), 7.01(\mathrm{~d}$, 1H, $/ \mathrm{I}-4$), 3.94 (s, 311, OOIL).

6-Chloro-7-(6-amino-3-nitrophenyl)amino-5,8quinoxalinedione (7). 6,7-Dichloro-5,8-quinowalinedione (1) ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) was dissolved in boiling ethanol (20 mL). 4-Nitro-1 2-phenylenediamine (100 mg , 0.66 mmol) was added to this hot solution and the reaction mixture was reflused for 1 h . The solvent was evaporated under reduced pressure and ethyl acetate was added to the residue and then the precipitate was collected by filtration: yield, $90 \mathrm{mg}(60 \%)$: mp $284-286^{\circ} \mathrm{C}$: 'H NMR 87.67 (br. $\left.\mathrm{m}, 1 \mathrm{II}, / /-4^{\prime}\right), 8.25\left(\mathrm{~s}, 1 \mathrm{H}, / /-5^{\prime}\right), 8.94\left(\mathrm{~s}, 211, / 1-2^{\prime}, 2\right), 9.10$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3$) , 10.6 (br. $\mathrm{s}, 2 \mathrm{H}, \mathrm{H}$)

Pyrazino[2,3-b]naphtho[2,3-e][1,4]dioxino-5,12quinone (8). 6,7-Dichloro-5.8-quinoxalinedione (1) (100 $\mathrm{mg}, 0.44 \mathrm{mmol}$) was dissolved in boiling ethanol (20 mL). o - Calechol ($60 \mathrm{mg}, 0.53 \mathrm{mmol}$) and triethylamine were added to this hot solution and the reaction misture was refluxed for 30 min . The solvent was evaporated under reduced pressure. The residue was loaded on a silica gel column (Kieselgel 9385, 230-400 mesh) eluted with chloroform/ acetone (9: 1): yield. $90 \mathrm{mg}(75 \%): \mathrm{mp} 210-211^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR $\delta 7.24$ (m, $3 \mathrm{HI}, I I-8,9$ and 7 or 10), 7.31 (d, $1 \mathrm{II}, J=$ $7.68 \mathrm{H} \not . \mathrm{H}-7$ or 10), 9.07 (dd, $2 \mathrm{H} . J=9.03 \mathrm{H} \not . \mathrm{H}-2.3$) : IR (KBr) $1680 \mathrm{~cm}^{-1}$: MS $m z$ for $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} 266$.

5-Chloro-6-hydroxypyrazino[2,3-h]quinoxaline (10). 6,7-Dichloro-5,8-quinoxalinedione (1) (300 mg .1 .32 mmol) was dissolved in acetonitrile (20 mL). Ethylenediamine ($0.12 \mathrm{~mL} . \quad 1.97 \mathrm{mmol}$) and diisepropylethyamine ($0.69 \mathrm{mI}, 3.95 \mathrm{mmol}$) were added to this solution and the reaction mixture was stirred for 10 min . The precipitate was collected by filtration and recrystallized from ethyl acetate/ n-hexane: yield, $170 \mathrm{mg}(61.3 \%)$: mp $>2800^{\circ} \mathrm{C}$: 'II NMR δ 9.03 (d, 1H. $\mathrm{H}-2$ or 3). 9.13 (d, IH. $H-2$ or 3), 9.21 (d, 1H; H-8 or 9). 9.27 (d, 1II, $H-8$ or 9). 7.96 ($\mathrm{s} .1[I, O H):$ IR (KBr) $3350 \mathrm{~cm}^{-1}: \mathrm{MS} m z$ for $\mathrm{C}_{10} \mathrm{H}_{i} \mathrm{~N}_{4} \mathrm{O}^{*} \mathrm{Cl} 232,328$ (TFAA derivative): $m z$ for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}^{17} \mathrm{Cl} 234,330$ (TFAA derivative).

3-Methyl-5-chloro-6-hydroxypyrazino[2,3-h]quinoxaline (11). 1,2-Diaminopropane ($0.18 \mathrm{mI}, 1.97$ mmol) was added to a suspension of 6,7 -dichloro-5,8-quinoxalinedione (1) (300 mg. 1.32 mmol) in ethanol (20 mL) and this reaction misture was stirred for 30 min . The solrent was evaporated under reduced pressure and ethanol and ethyl acetate were added to the residue. The precipitate was collected by filtration: vield, $190 \mathrm{mg}(59.4 \%)$; $\mathrm{mp}>280$
 $\mathrm{IR}(\mathrm{KBr}) 3230 \mathrm{~cm}^{-1}$

10-Chloro-9-hydroxy-4H-2,3-dihydropyrazino ${ }^{2}$, 3. $\mathrm{f}[[1,4]$ benzoxazine ($\mathbf{1 2}$). Monoethanolamine (0.12 mL .1 .97 mmol) was added to a suspension of 6.7 -dichloro5,8 -quinovalinedione (1) $300 \mathrm{mg}, 1.32 \mathrm{mmol}$) in ethanol

Scheme 1.
(10 mL) and acetonitrile (10 mL) at $0^{\circ} \mathrm{C}$, and this reaction misture was stired for 1 h . The precipitate was collected by filtration and rectystallized from ethanol: yield, 230 mg (74.2%) $\mathrm{mp} 1.32-134^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\delta 3.48\left(\mathrm{~m}, ~ 1 \mathrm{H}, \mathrm{NCH}_{3}\right)$) 3.88 (m, 2H, wach H ol $\mathrm{N}-\left({ }^{\circ} H_{-}^{-\left(H_{-}-\mathrm{O}\right)}, 4.32(\mathrm{~m}, 1 \mathrm{H}\right.$, () $\left.\mathrm{CH}_{2}\right), 8.01(\mathrm{~s}, 1 \mathrm{H}, O / I), 8.52(\mathrm{~s}, 1 \mathrm{H}, 8 / 1), 8.81(\mathrm{dd}, 2 \mathrm{H}$, $I I-6,7$): IR (KBr) $3350 \mathrm{~cm}^{-1}$: MS $m z$ for $\mathrm{C}_{1,5} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}^{3 "} \mathrm{Cl}^{3}$ 2.37: MS m z for $\mathrm{C}_{1 n} \mathrm{H}_{8} \mathrm{~N}_{5} \mathrm{O}_{3}{ }^{17} \mathrm{Cl} 239$.

4H-2,3-dihydropyrazino[2,3-a]9,10-dihydrothia-zino[2,3-c][1,4]benzothiazin (13). A solution of 6,7 -dichloro-5,8-quinoxalinedione (1) ($300 \mathrm{mg}, 1.32 \mathrm{mmol}$) in ethanol (5 mL) was added to a solution of aminoethanthiol IlCl ($80 \mathrm{mg}, 1.97 \mathrm{mmol}$) and triethylamine (0.07 mL) in ethanol (20 mL) under nitrogen and the reaction mixture was stirred for 30 min. The precipitate was collected by filtration and recrystallized from ethanol: yield, 190 mg (52.8%): mp 276-278 "C: ' ${ }^{1}$ I NMR 83.27 (m, $411, S C / I$), $4.03(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NH}),, 8.82(\mathrm{~d}, \mathrm{JH}, \mathrm{H}-10), 9.91(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-$ 11). 10.2 (s, 1H, MII); IR (KBr) $3350 \mathrm{~cm}^{-1}: M S m z$ for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{\mathrm{t}} \mathrm{S}_{1} 276$.

1H-Triazo[4,5-g]quinoxaline-4,9-dione (14). 6-Acetamido-7-amino-5.8-quinoxalinedione (5) (500 ing. 2.2 mmol) was dissolved in water (10 mL) with c-HCl (0.3 mL) and the color was removed with chlorite pad and the filtrate was diluted with water (20 mI). $10 \% \mathrm{NaNO}_{2}$, solution (20 mL) was added slowly to this solution at $10^{\circ} \mathrm{C}$ with stirring over a period of 2 h . The solvent was evaporated under reduced prevsure and cthanol was added to the residue and the precipitate was collected by filtration: yield, 280 mg (65.1%): mp 243-245 ${ }^{\circ} \mathrm{C}$: ${ }^{\text {'II }}$ NMR $\delta 8.98$ ($\mathrm{d}, ~ / I-2.3$): IR (KBr) $21.31,1676 \mathrm{~cm}^{-1}$

Scheme 2.

Scheme 3.

Result and Discussion

The reaction of 6,7-dichlore-5,8-quinoxalinedione (1) with 1,2-phenylencdiamine, 2 -aminothiophenol and 2 -aminophenol gave 6-chloro-5-hydroxy-12H-pyrazino [2,3-a] phenazine (2), 6-choro-5-hydroxy- 12 H -py razino [2,3-a] phenothiazine (3) and 6 -chloro-5-hydroxy-1211-pyrazino[2,3a]phenoxazine (4), respectively which were angular heterocyclic compounds (Scheme 1). That yield of reaction was higher than with catalyst like cerium chloride hydrate. ${ }^{\text {. }}$ Reaction mechanism could be both of nucleophilic substitution and nuelcophilic addition. ${ }^{3}$ Allan and Reynolds. ${ }^{*}$ reported that the condensation of 2,3-dichloro-1,4-naphtoginone with 2 -aminothiophenol produced 5,16-dithia-5. 10-diazanaphtho[2,3-a]benzo[e]enthracene which was condensation compound with 2 mole of 2 -aminothiophenol. However. in the case of $\mathbf{1}$ even though more than 2 eq . of 2 -aminothiophenol was introduced, the compound 3 was obtained. It was the same result as the reaction of 1 with 2 -ammothiophenol. When I was treated with 2 -aminophenol in ethanol, the enol form 4 was obtained. In this reaction the attack of amino group on carbon in 6 -position was expected but hydroxyl group attacked to chlorine carbon for substitution and amino group was condensed with quinone. When 6-acetamido-7-chloro- 5,8 -cuinoxalinedione was treated with 4 -aminophenol to gencralize it, 6-acetamido-7-(4-aminophetoxy)- 5,8 -quitnovaline dione (5) was obtained

The effect of electron withdrawing and electron donating
subsiunefrs in I, 2-phenglenediamme nn ramdenagion was examined The reaclinn nis 1 with d-merhoxy-1.7phenyleneclismine pave condenkalina compaund (6) Ru। the ring cinsute emmpalind wis mill ahle trin nhisin by reac linn of 1 with 4 nism 1.2 phenylenediamine Eecasse af the Wrak hasicity of amme Thus the nitn girmp which was an elecion withdrawing grisup in Δ-alims-1, 7-phrny|rnediamine comģledely inhibiled ting closute

The repetinn nif with a-catechal penduced a lineat ring closure enmpaund, pyrazino|2,3-b|naphtho|2,3-2\}| $1,4 \mid$ dianino-s 12 -quinane ($\mathbf{8}$) Trielhylamine was necessary as a calalysl in this maction.

As described previcusly the raction nf 1 with 2 -яm inopyridine produced a linear hetemoyelic ompanumd. pyridn
 result was the came as 6,3 -duchano- ${ }^{2}$. -quinalinedicne bul different from 2.3 dichlnin 1,4 raphrhmonidnant

The reaction of $\mathbf{1}$ wilh aliphaic dinuclenphile yielded con densation products and showed diversity in the nature nif ihe reactinn (Scheme 2) Unexpectedly, G-chlom-f-hydmes-

 maxalinediene (l) hlue-vankel; -chstgr, yellnw; netiral, grown; + charge
pyrazinol2. 3 hlquinoxaline (10), which was an ammalized componmal, was propored hy veacuon af 1 with elhy lenediamine' in the presente of diisnpurncylethylamme The aromatization was not necurted in the reactian of 2,7-duchlaro-I, 4-maphihnquinciee and 6,7-dichlatn-s, A-quiתalinedinne with ethylenediamine Mяny alempus la aet an unarnmalized condensalinn compcund nf 1 with eihylene diЯmine were Ined under vanaus conditions but compound 10 was nhained in every cases Thr analngue rrachnn' ni I wilh 1 2-d'aminoprofare geve an ammatized compand, 7-
 However, lhe risg closise comphond thes anl ohbined by reaction of $\mathbf{1}$ wish N meihyleihylenediamine
 was ohlained hy reaclinn of 1 with monefthanolamine Reaction of I wilh eminasthanihinl gaved a cyclizalinn pmi-
 c] $][1,4$)henzothiazine $\{13\}$, in which bath of the chiorine aboms were replaced by sultur anom The exmpmund Is might he formed va a Michael addilion eliminaticл reaction and aubsequent ring clegitr through condensalinim reamen of amino gmup and ketne This was a different resull frim the seaclion of I with 2-aminathicphenal,

 pairy

Diazotization ${ }^{\text {b }}$ of 6-acetamido-7-amino-5,8-quinosalinedione gave another ning closure compound, ${ }^{1} \mathrm{H}$ -triazo[4,5-g]quinoxaline-4,9-dione (14) (Schence 3). 6-Acetamido-7-amino-5,8-quinoxaline dione was synthesized from 6,7-diamino-5,8-quinoxalinedione." Diaminoquinone was formed by amination of dichloroquinone with ammonia readily." Hontever, 1 reacted with ammonia to yield 6,7-dichloro-5,8-quinovalinol which was a reducted compound.

The compound 1 showed the different reactivity from 2,3-dichloro-I,4-naphthoquinone and 6,7-dichloro-5,8-quinolinedione in some reactions. It was probably caused by electronic effects. A comparison of chectron densities in quinolinedione and quinoxalinedione was showed in Figure 1 and Figure 2. The B ring in quinowalinedione has more positive charge than quinolinedione even though there was one mitrogen diflerence between them. The electron distribution in heterocy cles appeared to alfect the reactivity

The intercalation of compounds with human DNA was the insertion of a planar part of a molecule between two stacked base pairs. ${ }^{12}$ The molecule must have $3-4$ planar rings and the intercalation complex was parallel to the axis of the helix for an ideal inlercalation. ${ }^{13}$ We synthesired angular and planar heterocyclic compounds that had $3-4$ rings and drew intercalation complexes of synthetic eompounds by molecular modeling. As expected. the intercalation complex of planar heterocyclic compound (9) between $(\mathrm{CC} / \mathrm{GC}$ base pairs was parallel to the asis or the helix (Figure 3) However, DNA intercalation complex of angular heteroeyclic compound (6) between $\mathrm{GC} / \mathrm{GC}$ hase pairs did not show the optimum intercalation (Figure 4). So, the planar hetroeyclic compound was expected to have antitumor activity.

Acknowledgement. This work was partially supported by Korea Science Engineering Foundation (KOSEF) and Ministry of Science and Technology (MOST). The authors, wish to thank Il Dong Pharm. Co. for its donation of Chair Fund to KIST.

References

1. Shaikh. I. A.: Johnson, F.: Grollman, A. P. J. Med. Chern. 1986, 29, 1329
2. Han, G.: Shin, K. J.: Kim, D. C.: Yoo, K. H.: Kim, D. T. Park. S. W. Heterocycles 1996, 43, 2495.
3. Kutyreve, $\wedge . \Lambda .:$ Moskva, V. V. Russion Chemical Rewicw. 1991, 60t/l), 72.
4. Tincke, Th.: Schmidt, M. Justtes Liehigs Am. (hem. 1895, 286, 27
5. Vanallan, I. A.: Reynolds, (i. A. J. Org. Chem. 1963, 28, 1019
6. In Houben-wey/ Chinon Teil/I: Vol. VII/3a, p 385.
7. Kallmayer, H. J.: Sevlang. K. H. Arch. Pharm. (H'einheim) 1980, 313, 603.
8. Kallmayer, H. T. Seylang, K. Arch. Pham. (Hemheim) $1983, \dot{3} / 6,283$.
9. Kallmayer, II. J. Irch. Pharmaz. 1974, 307, 806.
10. Fieser, I. F.: Martin, F. I. . J. Am. (Whem. Soc. 1935, 57, 1844.
11. In I/ouben-wey/ Chinone Teil $I /$: Vol. VII/3a, p 559.
12. Beman. H. M.: Young. P. R. Ahmit. Rev. Biophys. Biong. 1981, 20,87
13. Balaji, V. N.: Dixon, J. S.: Smith, D. H.: Venkataraghavan, R.: Murdock, K. C.: Ann, N. Y. Acad. Sci. 1985, 439, 140.

The Molecular Mechanics Evaluation of the Stability of Bridgehead Olefins Containing Medium Rings

Jang-Seol Kim
Department of Chemistry, Taegu Lniversity, Kympsom, Kywnghe 712-71, Kovea
Received December 7. 1996

Abstract

The stability of bridgehead olefins containing 8 and 10 membered rings has been investigated by the MMX moleculat mechanics calculation together with the GMMX conformational searching program. A number of ' hyperstable' bridgehead olefins, which have negative olefin strain values, have been found from the calculated values of strain energy and olefin strain for the series of $i m$ - and out bicyclo[n.3.3]alk-1-ene and m - and ou-bieyclo[n.4.4]alk-1-ene ($n=1$ to 8). For the bridgehead olefins with 'out' topology, hyperstable oletins were found in the systems having cyclononene or larger rings. For the bridgehead olefins with 'in' topology. hyperstable oletins were found in the systems having cyclodecene or larger rings.

Introduction

Double honds at the bridgehead positions have been regarded as unstable and synthetically less accessible. This idea has been known as Bredt's rule, which states that the elimination to give a doule bond in a bridged bicyclic system
always leads away from the bridgehead position.' Sinee the pioneering study by Bredt extensive research efforts have been made toward the synthesis, structural study, reactivity, and mechanistic study of strained bridgehead olefins. Λ number of review articles are now available ${ }^{2+4}$ Most research efforts on the bridgehad olefins, however, have

