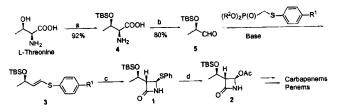

Stereoselective Preparation of Chiral (E)- Enolthioether from L- Threonine for Practical Syntheses of Carbapenem and Penem Intermediates


HeeAn Kwon, MiJung Lee, InHee Lee, SuJin Lee, TaekHyun Yoon, and TaeSeop Hwang*

CHOONGWAE Research Laboratory, CHOONGWAE Pharma Corporation, P.O. Box Suwon 61, Republic of KOREA Received January 7, 1997

After the isolation of (+)-thienamycin in 1976,¹ carbapenems and penems have received much attention as a new generation of potent antibiotics. Their stereocontrolled total syntheses have employed (3S,4R)-4-phenylthio-3-[(1'Rtert- butyldimethylsilyloxy)ethyl[-2-azetidinone (1), (3R.4R)-4-acetoxy-3-[(1'R- tert- butyldimethylsilyloxy)ethyl]-2-azetidinone (2), or its equivalents as key intermediates to these β lactams. The Suntory group described the synthesis of these intermediates from (R)-butane-1.3-diol.2 or (R)-3-hydroxybutyrate⁺ via enolthioether (3a) in seven or eight steps, respectively. The drawbacks of these approaches are: 1) the starting material obtained by fermentation is expensive, 2) the enolthioether is obtained as a 2.5 ± 1 mixture of E and Z isomers, and it has been shown that the Z-isomer gave inferior Stereoselectivity in its nucleophilic addition to chlorosulfonyl isocyanate(CSI). Thus an alternative stereoselective preparation of the optically active (E)- enolthioether is needed.

Here we wish to report an efficient alternative approach to carbapenem and penem intermediates via stereoselective synthesis of (E)- enolthioether **3** from L-threenine as shown in Scheme 1.1 Two key features involve the use of naturally abundant L-threonine as a versatile chiral template and the Horner-Wadsworth-Emmons reaction (HWE reaction) to secure the vinvlsulfide, in which the sulfide group can stabilize the phosphonate anion sufficiently to give high (E)-Stereoselectivity. The required aldehyde 5 was prepared as follows. The hydroxy group of L -threenine was protected in 92% vield using TBSCI and DBU in the presence of DMAP.5 The use of a catalytic amount of DMAP was critical to shorten the reaction time and to improve the chemical yield. Then the protected L-threenine was degraded by ninhydrin in aqueous methanol to give the corresponding aldehyde 5 in 80% yield,6 which was identical in all respects

Scheme 1. a) TBSCI, DBU, cat. DMAP, CH,CN, b) ninhydrin. MeOH11O, c) CSI, Pr⁺O, d) Cu(OAc), AcOH.

with the previously prepared.³⁸ Since the aldehyde **5** was obtained from expensive (R)-(+)-lactate by silylation followed by DIBALH reduction, our synthetic approach from naturally abundant L -threenine seems to be an alternative practical method.

Next the HWE reaction between aldehyde **5** and diethyl phenylthiomethylphosphonate was examined under various conditions (Table 1).

While the use of NaH or *t*-BuOK as a base gives rather inferior yield and lower (*E*) -selectivity, the lithium bases show the highest stereoselectivity. After testing various conditions, we found that the best result was obtained on using *n*-BuLi as a base in THF at -78 °C.° We also examined the effect of the substituents of phosphonate on the stereoselectivity and the chemical yield.¹⁰ The results are given in Table 2.

As expected, (E)-Stereoselectivity is enhanced as the phosphonate size increases (Entries 1, 4 and 7).ⁿ Diisopropyl phosphonate resulted in inferior chemical yields to dimethyl or diethyl phosphonate. The substrates with an electron withdrawing groups at phenylthio moiety gave higher chemical yield (Entries 2, 5 and 8) than those with an electron donating groups (Entries 3, 6 and 9).

We conducted the CSI cyclization with $\langle E \rangle$ -thioethers to obtain the expected β -lactam 1, which was converted into 2 in 52% overall yield according to the literature method.¹¹

In summary, (E)- enolthioether **3** has been synthesized stereoselectively in three steps from naturally abundant *L*threenine via Strecker degradation and the subsequent HWE reaction using lithium base, which was then subjected to CSI cyclization to give (3S,4R)-4-phenylthio-3-](I'R- tert- butyldimethylsilyloxy)ethyl]-2-azetidinone **1**. The

 Table 1. HWE Reaction of Aldehyde (5) with Diethyl phenylthiomethylphosphonate

Entry	Base	Solvent	Temperature -	1a (R + H)	
			(C)	E Z ratio*	Yield (°₀)
I	t- BuOK	DMF	0	1.59-1	49
2	1- BuOK	DME	0	1 1.22	55
3	≁ BuOK	Et O	-20	11	35
4	NaH(60%)	THF	0	11	51
5	NaH(60° 0)	Et O	0	11	30
6	t- BuLi	THF	-78	E_{-}	60
7	t- BuLi	Et O	-78	E_{-}	34
8	n- BuLi	THF	-78	E_{-}	75
9	IM-LiHMDS	THF	-78	Ε	68

"determined by HPLC and "II NMR (300 MHz) of the erude, "isolated yield,

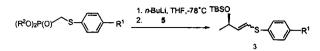


 Table 2. The Effect of the Phosphonate Size and the Substituents at the Phenylthio part

Entry	R	R	Product	E Z ratio '	Yield (0 $_{0}$) 2
1	Н	Me	3 a	97.5/2.5	77
2	C1	Me	3 b	97.9 2.1	78
3	OMe	Me	3с	E_{-}	67
4	11	Et	3a	Ε	75(93)
5	C1	Et	3 b	Ε	77
6	OMe	Et	3c	E_{\pm}	67
7	Н	i -Pr	3a	Ε	65
8	Cl	i -Pr	3b	E_{\pm}	69
9	OMe	<i>i</i> -Pr	3 c	Ε	47

"determined by HPLC and 'H NMR (300 MHz) of the crude. 'isolated vield. HPLC vield.

following substitution reaction produced (3R,4R)-4-acetoxy-3-[(1'R-*tert*-butyldimethylsilyloxy)ethyl]-2-azetidinone **2.** An alternative new approach has been developed for the synthesis of carbapenem and penem intermediates from readily available *L*-threenine.

Experimental

O- t- butyldimethylsilyl-L-threonine (4). Under the nitrogen atmosphere, L-threonine (5 g, 42 mmole) and t-butyldimethylsilylchloride (7.6 g. 50 mmole) were suspended in acetonitrile (50 mL) and the mixture was agitated at room temperature for 20 min. After the reaction temperature was cooled down to 0 °C, 4-dimethylaminopyridine (0.6 g) and 1,8-diazabicyclo[5:4.0]undee-7-ene (8.4 g, 55 mmole) were slowly added to the above mixture, and the resultant mixture was agitated at 0 °C for 1 h. The reaction temperature was slowly raised up to room temperature and then a strong agitation for 16 h resulted in white precipitate. By filtering the precipitate under reduced pressure, 8.2 g of the crude product was obtained. The filtrate was concentrated and the residue was suspended with acctonitrile (20 mL) and vigorously stirred at 0 °C for 2 h to provide 1.2 g of erude product. The combined erude product was reervstallized from methanol/acetonitrile to give white pure product (9.0 g, 92%).

(R)-(+)-2- tert- butyMimethylsilyloxypropanal (5).

O-*t*-butyldimethylsilyl-*L*- threonine (5 g, 21.4 mmole) was dissolved in mixed solvent of distilled water and methanol (1 : 1.5, 150 mL) and the mixture was heated to 50 °C. A solution containing of ninhydrin (9.9 g, 55.3 mmol) in co-solvent (50 mL) was slowly added dropwise and the resultant mixture was agitated at 50 °C for 1 h then saturated with NaCl, diluted with EtO/*n*-hexane (1/1, 500 mL). After vigorous agitation, dark-brown byproduct was filtered off,

the aqueous phase was extracted with Et_iO. The combined organic phase was dried over MgSO₄ and concentrated. The residue was purified by flash column chromatography (Et_iO/n-hexane=1/5) to give the aldehyde (3.2 g, 80%).

General procedure of HWE reaction. To a stirred solution of dialkylphenylthiomethyl phosphonate (1.75 mmole) (6) in dry THF was added a solution of 2.5 M *n*-BuLi (2 mmole) in hexane at -78 °C under inert atmosphere. The reaction mixture was stirred for 30 min at this temperature then a solution of TBS-aldehyde (5) (1.59 mmole) in THF was added dropwise at -78 °C, allowed to warm to room temperature for 2 h. The pale yellow solution was treated with aqueous NH₄Cl and extracted with Et₄O. The organic layer was dried over MgSO₄ and concentrated *in vacuo* then purified by column chromatography (Et₄O/*n*-hexane= 1/30). The ratio was determined by HPLC and 'H NMR of the crude. Coupling constants for the *trans* - and *cis* -vicinal protons of 15-16 Hz and 10-11 Hz respectively are well established.⁸

Acknowledgment. We would like to thank researchers in the Analytical Unit of *CHOONGWAE Pharma Co.* for nmr spectral measurements.

References

- Kahan, J. S.; Kaha, F. M.; Currie, S. A.; Jackson, M.; Stapley, E. O.; Miller, T. W.; Hendlin, D.; Mochales, S.; Hernandez, S.; Woodruff, H. B. 16th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, 1976, Abstr. 227.
- Nakatsuka, T.; Iwata, H.; Tanaka, R.; Imajo, S.; Ishiguro, M. J. Chem. Soc., Chem. Commun. 1991, 662.
- Ishiguro, M.: Iwata, H.; Nakatsuka, T.; Tanaka, R.; Maeda, Y.; Nishihara, T.; Noguchi, T. J. Antibiot. 1988, 41, 1685.
- Sim, Y. K.; Hwang, T. S.; Lee, M. J.; Kwon, H. A.; Song, T. H. U.S. Patent Appl. No. 08/512507.
- Orsini, F.; Pelizzoni, F.; Sisti, M.; Verotta, L. Org. Prep. Proced. Int. 1989, 21, 505.
- 6. Fones, W. J. Am. Chem. Soc. 1954, 76, 1377.
- Wakabayashi, S.; Ogawa, H.: Ueno, N.; Kunieda, N.; Mandai, T.: Nokami, J. Chem. Lett. 1987, 875.
- 8. Marshall, J.; Xie, S. J. Org. Chem. 1995, 60, 7230.
- Hauske, J.: Rapoport, H. J. Org. Chem. 1979, 44, 2472, and references therein.
- The required phosphonate was prepared according to the literature. (a) Tamura, Y.: Annoura, H.; Fuji, M.; Okura, M.: Ishibashi, H. *Chem. Pharm. Bull.* **1986**, *34*, 540. (b) Nasser, J.: About-Jaudet, E.: Collignon, N. *Phosphorus, sulfur, Silicon Relat. Elem.* **1990**, *54*, 171.
- Deschamps, B.: Lefebvro, G.: Redjal, A.: Seyden-Penne, J. Tetrahedron 1973, 29, 2437.
- Shimamoto, T.; Inoue, H.; Yoshida, T.; Tanaka, R.; Nakatsuka, T.; Ishiguro, M. *Tetrahedron Lett.* 1994, 35(32), 5887.