DOI QR코드

DOI QR Code

Transition-State Structures for Solvolysis of Methanesulfonyl Chloride

  • Published : 1997.11.20

Abstract

Solvolyses of methanesulfonyl chloride (CH3SO2Cl) in water and methanol have been studied theoretically using ab initio self-consistent reaction field (SCRF) molecular orbital method. All stationary structures including transition state on the potential energy surface in solution have been found and compared with the gas phase structures. The overall reaction occurs via a concerted SN2 mechanism with a non-cyclic trigonal bipyramidal transition state, and the activation barrier is lowered significantly in solution. The transition state for the hydrolysis reaction is looser than that for the methanolysis reaction, and this is in accord with the experimental findings that an SN2 type mechanism, which is shifted toward an SN1 process or an SAN process in the hydrolysis and alcoholysis reaction, respectively, takes place. The catalytic role of additional solvent molecules appears to be a purely general-base catalysis based on the linear transition structures. Experimental barrier can be estimated by taking into account the desolvation energy of nucleophile in the reaction of methanesulfonyl chloride with bulk solvent cluster as a nucleophile.

Keywords

References

  1. Reactions of Organosulfur Compounds Block, E.
  2. Acc. Chem. Res. v.9 Allison, W. S.
  3. Chem. Rev. v.82 Zefirov, N. S.;Makhonkov, D. I.
  4. Quantum Chemistry of Organic Compounds Minkin, V. I.;Simkin, B. Ya.;Minyaev, R. M.
  5. Chem. Phys. Lett. v.130 Volatron, F.;Demolliens, A.;Lefour, J.-M.;Eisenstein, O.
  6. J. Chem. Soc., Perkin Trans. 2 Lyons, J. E.;Schiesser, C. H.
  7. J. Org. Chem. v.57 Ferris, K. F.;Franz, J. A.
  8. J. Phys. Chem. v.97 Markham, G. D.;Bock, C. W.
  9. J. Chem. Soc., Perkin Trans. 2 Okuyama, T.;Nagase, S.
  10. The Chemistry of Sulphinic Acids, Esters and Their Derivatives Okuyama, T.;Pata, S.(ed.);Rappoport, Z.(ed.)
  11. The Chemistry of Sulphinic Acids, Esters and Their Derivatives Okuyama, T.;Pata, S.(ed.);Rappoport, Z.(ed.)
  12. Adv. Phys. Org. Chem. v.17 Kice, J. L.
  13. Chem. Soc. Rev. v.18 Gordon, I. M.;Kaskill, H.;Ruasse, M. F.
  14. Mechanisms of Inorganic and Organometallic Reactions v.8 Stedman, G.;Twigg, M. V.(ed.)
  15. J. Am. Chem. Soc. v.78 Hall, H. K. Jr.
  16. Can. J. Chem. v.35 Robertson, R. E.;Laughton, P. M.
  17. Can. J. Chem. v.49 Rossall, B.;Robertson, R. E.
  18. J. Chem. Soc., Perkin Ⅱ Ballistreri, F. P.;Cantone, A.;Maccarone, E.;Tomaselli, G. A.;Tripolone, M.
  19. Austral. J. Chem. v.15 no.668 Foon, R.;Hambly, A. N.
  20. Austral. J. Chem. v.24 Foon, R.;Hambly, A. N.
  21. J. Korean Chem. Soc. v.3 Kim, W. K.;Lee, I.
  22. J. Chem. Soc., Perkin Trans. 2 Koo, I. S.;Bentley, T. W.;Kang, D. H.;Lee, I.
  23. J. Chem. Soc., Perkin Trans. 2 Koo, I. S.;Bentley, T. W.;Llewellyn, G.;Yang, K.
  24. J. Phys. Org. Chem. v.6 Koo, I. S.;Lee, I.;Oh, J.;Yang, K.
  25. J. Korean Chem. Soc. v.17 Lee, I.;Kim, U. R.;Bai, S. H.
  26. J. Korean Chem. Soc. v.18 Kim, U. R.;Lee, K. Y.;Bai, S. H.;Lee, I.
  27. Can. J. Chem. v.47 Robertson, R. E.;Rossall, B.;Sugamori, S. E.;Treindl, L.
  28. Bull. Korean Chem. Soc. v.15 Yang, K.;Koo, I. S.;Kang, D. H.;Lee. I.
  29. J. Phys. Chem. v.99 Yang, K.;Koo, I. S.;Lee, I.
  30. J. Am. Chem. Soc. v.58 Onsagar, L.
  31. J. Chem. Phys. v.55 Miertus, S.;Scrocco, E.;Tomasi, J.
  32. J. Chem. Phys. v.95 Wong, M. W.;Wiberg, K. B.;Frisch, M. J.
  33. J. Am. Chem. Soc. v.113 Wong, M. W.;Frisch, M. J.;Wiberg, K. B.
  34. J. Phys. Chem. A v.101 Kim, K. S.;Cho, S. J.;O. K. S.;Son, J. S.;Kim, J.;Lee, J. Y.;Lee, S. J.;Lee, S.;Chang, Y.-T.;Chung, S. K.;Ha, T.-K.;Lee, B.-S.;Lee, I.
  35. J. Am. Chem. Soc. v.117 Wolfe, S.;Kim, C.-K.;Yang, K.;Weinberg, N.;Shi, Z.
  36. Wolfe, S.;Shi, Z.;Yang, K.;Ro, S.;Weinberg, N.;Kim, C.-K.
  37. Frisch, M. J.;Trucks, G. W.;Schlegel, H. B.;Gill, P. M. W.;Johnson, B. G.;Robb, M. A.;Cheeseman, J. R.;Keith, T. A.;Petersson, G. A.;Montgomery, J. A.;Raghavachari, K.;Al-Laham, M. A.;Zakrzewski, V. G.;Ortiz, J. V.;Foresman, J. B.;Cioslowski, J.;Stefanov, B. B.;Nanayakkara, A.;Challacombe, M.;Peng, C. Y.;Ayala, P. Y.;Chen, W.;Wong, M. W.;Andres, J. L.;Replogle, E. S.;Gomperts, R.;Martin, R. L.;Fox, D. J.;Binkley, J. S.;Defrees, D. J.;Baker, J.;Stewart, J. P.;Head-Gordon, M.;Gonzalez, C.;Pople, J. A.
  38. Red-Hat Linux 4.2 Barnes, D.;Ewing, M.;Fulbright, M.;Johnson, M. K.;Knobe, J.;Maher, M.;Matthews, H.;Smith, C. Jr.;Troan, E.
  39. J. Am. Chem. Soc. v.116 Hofmann, M.;Schleyer, P. v. R.
  40. J. Phys. Chem. v.89 Chen, T. S.;Moore Plummer, P. L.
  41. J. Am. Chem. Soc. v.119 Schrφder, S.;Jensen, F.
  42. Koo, I. S.;Yang, K.
  43. J. Am. Chem.Soc. v.116 Jiao, H.;Schleyer, P. v. R.
  44. Proteins v.28 Amzel, L. M.
  45. Chem. Phys. Lett. v.176 Mhin, B. J.;Kim, H. S.;Yoon, C. W.;Kim, K. S.
  46. J. Chem. Phys. v.100 Mhin, B. J.;Kim, J. Lee, S.;Lee, J. Y.;Kim, K. S.
  47. J. Am. Chem. Soc. v.116 Kim, K.;Jordan, K. D.;Zwier, T. S.
  48. J. Am. Chem. Soc. v.114 Benson, S. W.;Siebert, E. D.
  49. Chem. Phys. Lett. v.219 Kim, J.;Mhin, B. J.;Lee, S. J.;Kim, K. S.
  50. J. Am. Chem. Soc. v.118 Benson, S. W.