J. Korea Soc. Math. Ed. Series B: The Pure and Applied Mathematics 4, No. 2 (1997) pp. 115-119

MAPPING THEOREMS ON $X_1 \oplus X_2$

JAE WOON KIM

ABSTRACT. We show that if $f_i: X_i \to Y$ is strongly continuous(resp. weakly continuous, set connected, compact, feebly continuous, almost-continuous, strongly θ -continuous, θ -continuous, g-continuous, V-map), then $F: X_1 \oplus X_2 \to Y$ is strongly continuous(resp.weakly continuous, set connected, compact, feebly continuous, almost-continuous, strongly θ -continuous, θ -continuous, g-continuous, V-map).

1. Introduction

Let $\{X_s|s\in S\}$ be a family of disjoint topological spaces, i.e., let $X_s\cap X_{s'}=\emptyset$ for $s\neq s'$. Let us consider the set $X=\cup_{s\in S}X_s$ and let us assume that sets $U\subset X$, such that the intersection $U\cap X_s$ is open in X_s for every $s\in S$, are open in X. The open sets defined in this manner satisfy the conditions for a topology. The set X with this topology is called the sum of spaces $\{X_s|s\in S\}$ [3], and is denoted by the symbol $\bigoplus_{s\in S}X_s$ or $X_1\oplus\cdots\oplus X_k$ if $S=\{1,2,\cdots,k\}$. It is well known that $V\subset X$ is closed iff $V\cap X_s$ is closed in X_s for all $s\in S$ [3].

In this paper, we restrict S to $\{1,2\}$. The author obtained the hints of this paper from following:

Theorem [3]. $F: \bigoplus_{s \in S} X_s \to Y$ is continuous iff for every $s \in S$, $f_s: X_s \to Y$ is continuous.

We shall show that

if $f_i: X_i \to Y$ is strongly continuous(resp. weakly continuous, set connected, compact, feebly continuous, almost-continuous, strongly θ -continuous, θ -continuous, g-continuous, V-map), then $F: X_1 \oplus X_2 \to Y$ is strongly continuous(resp.weakly

Received by the editors May 28, 1997 and, in revised form Nov. 7, 1997.

¹⁹⁹¹ Mathematcis Subject Classification. 54C08.

Key words and phrases, strongly θ —continuous, weakly continuous, set-connected, feebly continuous, almost-continuous, g-continuous, V-map.

continuous, set connected, compact, feebly continuous, almost-continuous, strongly θ -continuous, θ -continuous, g-continuous, V-map).

2. Preliminaries

 $F: X_1 \oplus X_2 \to Y$ is defined by $F(x) = f_i(x)$ if $x \in X_i$, where $f_i: X_i \to Y$, i = 1, 2. Let A be a subset of a topological space X. We shall denote the closure of A and interior of A in X by \overline{A} and Int(A) respectively. By $f: X \to Y$ we denote a function f from a topological space X into a topological space Y. No separation axioms on a topological space is assumed unless stated.

 $\overline{A \cup B} = \overline{A} \cup \overline{B}$ and $\operatorname{Int}(A) \cup \operatorname{Int}(B) \subset \operatorname{Int}(A \cup B)$ are very useful in this paper. Sets X, Y and X_i are topological spaces.

3. Definitions

Definition 1 [5]. X is said to be *connected* between A and B if there exists no closed-open set F of X such that $A \subset F$ and $F \cap B = \emptyset$.

Definition 2 [2]. $B \subset X$ is g-closed if $\overline{B} \subset G$, whenever $B \subset G$ and G is open. A function $f: X \to Y$ is said to be

Definition 3 [7]. strongly-continuous if for every subset $A \subset X$, $f(\overline{A}) \subset f(A)$.

Definition 4 [8]. weakly-continuous if for each $x \in X$, and each open set H containing f(x), there is an open set G containing x such that $f(G) \subset \overline{H}$.

Definition 5 [6]. set-connected provided that if X is connected between A and B, then f(X) is connected between f(A) and f(B) with respect to the relative topology.

Definition 6 [1]. compact if the inverse image of every compact subset of Y is compact subset of X.

Definition 7 [10]. feebly-continuous if for each open set U of Y, $f^{-1}(U) \neq \emptyset$ implies $Int(f^{-1}(U)) \neq \emptyset$.

Definition 8 [11]. almost-continuous(resp. strongly θ -continuous, θ -continuous) if for each $x \in X$ and each open set V containing f(x), there exists an open set U containing x such that $f(U) \subset \operatorname{Int}(\overline{V})$ (resp. $f(\overline{U}) \subset V$, $f(\overline{U}) \subset \overline{V}$).

Definition 9 [2]. g-continuous if the inverse image of closed set in Y is g-closed in X.

Definition 10 [4]. V-map if it satisfies: Given any open cover β of Y, $\{\text{Int}(f^{-1}(U))|U\in\beta\}$ is an open cover of X.

4. Theorems

Lemma 1 [1]. $f: X \to Y$ is strongly continuous iff $f^{-1}(y)$ is open in X for each $y \in Y$.

Lemma 2 [8]. $f: X \to Y$ is weakly continuous iff for each open set $V \subset Y$, $f^{-1}(V) \subset Int(f^{-1}(\overline{V}))$.

Theorm 3. If f_i are weakly continuous, so is F.

Proof. Let $V \subset Y$ be open. Then $F^{-1}(V) = f_1^{-1}(V) \cup f_2^{-1}(V) \subset \operatorname{Int}(f_1^{-1}(\overline{V})) \cup \operatorname{Int}(f_2^{-1}(\overline{V})) \subset \operatorname{Int}(f_1^{-1}(\overline{V}) \cup f_2^{-1}(\overline{V})) = \operatorname{Int}(F^{-1}(\overline{V}))$. Hence by Lemma 2, F is weakly-continuous.

Lemma 4 [9]. If a surjection $f: X \to Y$ is weakly-continuous, then f is set-connected.

Corollary 5. If F is surjective, and f_i are weakly-continuous, then F is set connected.

Proof. Use Theorem 3 and Lemma 4.

Theorem 6. If f_i are compact, so is F.

Proof. Let V be a compact subset of Y. Then $f_i^{-1}(V)$ are compact. Hence $F^{-1}(V) = \bigcup f_i^{-1}(V)$ is compact.

Theorem 7. If f_i are feebly continuous, so is F.

Proof. Let V be an open set in Y. Then $f_i^{-1}(V) \neq \emptyset$ implies $\operatorname{Int}(f_i^{-1}(V)) \neq \emptyset$.

Let $F^{-1}(V) \neq \emptyset$. Then $\emptyset \neq \cup \operatorname{Int}(f_i^{-1}(V)) \subset \operatorname{Int}(\cup f_i^{-1}(V)) = \operatorname{Int}(F^{-1}(V))$. Hence F is feebly continuous.

Theorem 8. If f_i are almost-continuous, so is F.

Proof. If $x \in X_1 \oplus X_2$, then we have $x \in X_1$ or $x \in X_2$. Let $x \in X_1$. Since f_1 is almost-continuous, for each open set V containing $F(x) = f_1(x)$, there exists a neighborhood U of x in X_1 such that $F(U) = f_1(U) \subset \operatorname{Int}(\overline{V})$. In the case of $x \in X_2$, the proof is similar to that of $x \in X_1$. This completes the proof.

The proofs of the following Theorems 9 and 10 are similar to that of Theorem 8. Hence we omit the proofs.

Theorem 9. If f_i are strongly θ -continuous, so is F.

Theorem 10. If f_i are θ -continuous, so is F.

Theorem 11. If f_i are g-continuous, so if F.

Proof. Let C be closed in Y. Let G be a neighborhood of $F^{-1}(C) = \bigcup f_i^{-1}(C)$ in $X_1 \oplus X_2$. Since $G \cap X_i$ is a neighborhood of $f_i^{-1}(C)$ in X_i , we have $\overline{f_i^{-1}(C)} \subset G \cap X_i$. Thus we have $\overline{F^{-1}(C)} = \overline{\bigcup f_i^{-1}(C)} = \overline{\bigcup f_i^{-1}(C)} \subset \bigcup (G \cap X_i) = G \cap (\bigcup X_i) = G$. Hence F is g-continuous.

Theorem 12. If f_i are V-maps, so is F.

Proof. Let β be an open cover of Y. Then $\{\operatorname{Int}(f_i^{-1}(U))|U\in\beta\}$ is an open cover of X_i . Since $\operatorname{Int}(F^{-1}(U))=\operatorname{Int}(\bigcup f_i^{-1}(U))\supset \cup \operatorname{Int}(f_i^{-1}(U)), \{\operatorname{Int}(F^{-1}(U))|U\in\beta\}$ is an open cover of $X_1\oplus X_2$. Hence F is a V-map.

Theorem 13. If f_i are strongly continuous, so is F.

Proof. Since $f_i^{-1}(y)$ is open in X_i for each $y \in Y$ by Lemma 1, $F^{-1}(y) = \bigcup f_i^{-1}(y)$ is open in $X_1 \oplus X_2$. Hence F is strongly continuous.

REFERENCES

- S. P. Arya, R. Gupta, On strongly continuous mappings, Kyungpook Math. J. 14(2) (1974), 131-143.
- M. C. Cueva, On g-closed sets and g-continuous mappings, Kyungpook Math. J. 33(2) (1993), 205-209.
- 3. R. Engelking, Outline of general topology, North Holland, Amsterdam 1968.
- 4. A. V. Jansen, On V-maps, J. London Math. Soc. 12(2) (1976), 465-466.
- 5. K. Kuratowski, Topology, Vol. II(transl.), Academic Press, New-York 1968.
- 6. J. H. Kwak, Set-connected mappings, Kyungpook Math. J. 11 (1971), 169-172.

N. Levine, Strongly continuity in topological spaces, Amer. Math. Monthly 67 (1960), 269.
_____, A decomposition of continuity in topological spaces, Amer. Math. Monthly 68 (1961), 44-46.
T. Noiri, On Set-connected mappings, Kyungpook Math. J. 16(2) (1976), 243-246.
_____, A note on feebly continuous functions, Kyungpook Math. J. 17(2) (1977), 171-173.
_____, On δ-continuous functions, J. Korean Math. Soc. 16 (1980), 161-166.

Department of Mathematics Education, Chongju University, Chongju 360-764, Korea.