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CONDITIONAL LARGE DEVIATIONS
FOR 1-LATTICE DISTRIBUTIONS

GIE-WHAN KM

ABSTRACT. The large deviations theorem of Cramér is extended to conditional prob-
abilities in the following sense. Consider a random sample of pairs of random vectors
and the sample means of each of the pairs. The probability that the first falls outside
a certain convex set given that the second is fixed is shown to decrease with the
sample size at an exponential rate which depends on the Kullback-Leibler distance
between two distributions in an associated exponential familiy of distributions. Ex-
amples are given which include a method of computing the Bahadur exact slope for
tests of certain composite hypotheses in exponential families.

1. Introduction.

Suppose that (X, Y) has a d-dimensional joint distribution P, where the random
vectors X and Y, are p and ¢ dimensional, respectively (d = p+ ¢). P will be
assumed to have a finite moment generating function in some open neighborhood
of the origin. Consider the exponential family {FP;} generated by P as follows:

dPs(z,y) = 691-z+92~y—¢(91,92)dp(m, v)

where 6 = (01, 62) and ¥(0) = log [ ef1*t02YdP(z,y).
Let
Q=1{0€ R*:9(f) < 0}.

We assume that 2 is open so that our exponential family is regular.

Jing and Robinson(1994) studied saddlepoint approximations for the conditional
large deviation P(X > c|Y = y) when p = 1. In practice we often have interests
when 1 < p < k. For example, a frequently occuring problem in testing hypotheses
mthe editors May 3, 1997.
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in a multivariate exponential family is to test if §; = .- = 6, = 0 for some
1 < p < k where 0p41,- - ,0; are nuisance parameters. Bahadur efficiency is
a popular measuring method of asymptotic efficiencies of competing test statistics.
When we have two competing test statistics such as the Wald test and the likelihood
ratio test for the above testing problem, Bahadur efficiency is the ratio of two exact
slopes of these statistics. To be able to compute these exact slopes, the conditional
large deviation of 1 < p < k is often needed. In this paper we investigate the
conditional large deviation of P(X ¢ C|Y = y) when the distribution P has a
1-lattice distribution. Here, C is a convex subset of RP, 1 < p < k. In section 3,

some applications are presented.

2. The Main Results

Suppose that P is a 1-lattice distribution on R? which we may assume concen-
trates on those points of R? having integer coordinates. Recall that the information

function for the exponential family can be written as

I(G,w) = Ealij—FPio'(Xry)

= (6 —w) - M0) - %(6) + ¥(w)

where

A0) = Eo(X,Y)

Define w(y) by
I{w(y),0) = inf{I(6,0) : X2(6) = v}

For C a convex set in RP, let 8(y) be such that
I(0(y),0) = inf{I(8,0) : M(6) ¢ C, A2(0) = y}
Lemma 1. Let C be a convez Borel set in R containing the point A\(w), and
I(6o,w) = inf{I(6,w) : M(6) £ C}

Then A(fp) is a boundary point of C, and 6y — w is orthogonal to a supporting
hyperplane to C at \(0o).
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Proof. We first argue that A\(6p) is a boundary point of C. Define I*(\, A\(w)) =
(0 —w) - A —(0) + Y(w) where 0 is defined by A(6) = A(i.e.[*(A\, A(w)) = [(6,w)).
Noting that

I
OAi0A;j - ZZJ:(G)

where >"(0) is the covariance matrix corresponding to Py, we see that I* is a strictly
convex function of \ as long as @ is interior to Q. Since I* (A, A(w)) has its minimum
at A(w), it is strictly increasing along rays from A(w). Hence, A(fy) must be a
boundary point of C.

Now, consider the convex set

S={\: "\, Aw)) < I"(A(fo), Mw))}

S and C have only boundary points in common. In paticular, A(p) belongs to both
S and C. Thus, there exists a separating hyperplane through A\(6y) (which supports
both sets), so it has equation

(gradl*)xey) - (x — A(6o)) = 0

or

(6o —w) - (x = A(6o)) =0

because the i*" component of (gradl*) A(Bo) 18

10 =) - X0) = $(0) + $(elop = (s — )
which completes the proof.
Lemma 2. 1(8(y),0) — I(w(y),0) = I{0(y), w(y))
Proof. By lemma 1, w(y) is orthogonal to a hyperplane supporting {(s,t) : t = y},
and this implies w1(y) = 0. Thus, since A2(8(y)) = A2 (w(y)) =y
1(6(y), 0) — I{w(v),0) = 01(y) - M1 (0(y)) + 62(y) - A2(6(y)) — ¥(0(y))
—w1(y) - Mw(y)) — wa(y) - Ae(w(y)) + P(w(y))
= (6:(y) —w1(¥)) - M(0(v)) + (62(y) — wa(y)) - A2(6(y))
= ¥(0(v)) + Y(w(y))
= I(0(v), w(v)).
This finishes the proof of lemma 2.
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Theorem 1. Under the above assumptions, if A1 (w(y)) € intC, and P(3_ ., Y; =
[ny]) > 0 for all n sufficiently large

1m LiogP(X, ¢ 017, = ) = _100) wie)).

Proof. Write the conditional probability as

_ . Iny)\ _ P(X.gC, Y, =)
P(X"¢CIY"" n) P(Y, = [4l)

and treat the numerator and denominator separately.

where

o T ()
" vn
A local limit theorem, such as Corollary 22.3, p.337 of Bhattacharya and Rao
(1976), for lattice random vectors yields

my] = ny, _ ¢°(0)
vn na/2

where ¢* is a normal density on R? with covariance matrix Y oo (w(y))-

, and Jg(w(y)) =

Pw(y)(Vn = (1 + 0(1))

For the numerator, first suppose that the convex set C is a half space a-Z < ¢.
Recall that 6(y) must be a multiple of (a,0) and a - A\1(8(y)) = ¢. Letting U,, =

Vb1(y) - (Xn — M1(0(y))) we can write
P (a-Xn >c, iY" = [ny])
i=1
= e—nI(6(y),0) Ze"/TEPe(y) ( = u, ZY [ny)

u20

and, using integration by parts

Pa-X, >c ZY [ny]) = e ™ (6@), O)/ Vvne~ ‘/—"Py(O s)ds

=1
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The set function PY(A) is defined by

=1

FPY(A) = Poy) (Un €A, ) Y= [ny])
Define another set function
8%(4) = / ¢**(z,0)dz
A
where ¢** is the normal density on R X R? with mean 0 and covariance matrix
covg(y) (U1, Y1)

The reader may note that (U,Y) may not have a lattice distribution so that an
asymptotic expansion such as used in the density case is not feasible. However, it
is possible to make use of a general local limit theorem of Charles Stone (1967) and
make an argument paralleling that in Efron and Truax (1968) to establish

fooo \/ﬁe—\/ﬁ-"pg(o’ s)ds

lim =1
n—eo —Lo [\ /ne—vns$0(0, s)ds

Using the fact that

/Ooo Vne~V™3%(0, s)ds = _____qﬁ**\ﬁ(_)ﬁ, 0) (1+0(1))

we get

] n e 0w L0 (1 4 (1))
Pla-Xa2d) Yi=[m]) = T—icmon '
2 aare M 0¢(0)(1 + o(1))

Then by lemma 2, we have

X > _ [yl _arew)ww) 77 (0,0)
Pla-X, > Y, = - )=¢€ vy -_—\/ﬁ¢*(0)(1+0(1))

This finsihes the proof of theorem 1.

3. Applications
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1. A frequently occuring problem in testing hypotheses about the parameter
0 = (01,62, ,0;) in a multivariate exponential family is to test that §; = 0 =

+ = 0, = 0 for some 1 < p < k, where fp11,---,0, are regarded as nuisance
parameters. It is well known(Matthes and Truax (1967)) that a complete class of
tests for this problem is the class of tests that have acceptance regions of the form:
(X,Y) € C where C, = {z : (z,y) € C} is convex for each y. Here, (X,Y) is the
mean of a random sample from the exponential family, and X,Y are the first p and
last k — p coordinates of the mean.

If such a test has an exact slope in the sense of Bahadur, then it can be found as

lim —log sup Po((X,Y) ¢ C)

n—oo0 7N 0600

where Qo = {0 :6, = --- = 0, = 0}. For a fixed 6 € Qp

Po((X,7) ¢ C) = / Ry(X ¢ C)IY = 4)dPE (v)

By making use of the results in the preceding sections one could approximate the

integrand. In fact, under suitable conditions one can show

lim log sup [ Ro(X ¢ C,I¥ = )Py () = = inf I(6(s), ()

n—00 71 8o€Q

where [ is the Kullback-Leibler information for the exponential family and

I(w(s),0
I(6(s),0

) = inf{l(w,0) : A2(w) = s}

) = nf{I(0,0) : \1(0) € 0C;, A2(0) = s}

We will not pursue this application here. For a different treatment yielding the
same result, see Kim (1997).

2. Our final example gives a large deviations result for the hypergeometric dis-
tribution. Presumably, one could obtain such a result using Stirling’s formula.
Suppose X and Z are independent, where X is b(1,p) and Z is b(k — 1,p). Let
(Xi,Z;),1=1,2,--- ,n be independent replications of (X, Z). The conditional dis-
tribution of > 7, X; given 3 =, Y; = y (where Y; = X; + Z;) is hypergeometric.

P(ZX —wIZY-— v) = ((lﬁ;n))

Yy
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where m = n(k — 1). By our theorem
—IOQP(Z Xiz]| |ZY lyn]) — —1(6(y),w(y))
i—1

if A\;(w(y)) < ¢ < y. The joint distribution of (X, Z) is a member of the exponential

family .
(k=1 1
piqi ’( i >p§q’£ 1-=

and the corresponding (X,Y) has distribution

Pia™” (z _ 1)1)‘5"(15_1_(”'“’) = (k ~ 1) e®lo9 sy TYloo

z Y—x

forz <y <z+(k—1), z=0,1 with natural parameters ; = logBl2, §y = logP2.
It is more convenient to express the information function in terms of the binomial

parameters. Without loss we can assume that p = %, or equivalently, 6; = 6 = 0.

2 k
= p1logp1 + q1logqr + (k — 1)pelogpe + (k — 1)gelogge + klog2

1-X Y X k-1-Y+X
I(ga 0) = pr.m{lo.qpl 4 % }

In order to find w(y) we set E,(Y) = y or p1 + (k — 1)p2 = y, and minimize the
information function. It is a straightforward calculation to fine

M(w@) =7

and

1(6(y), w(y)) = 1(6(y),0) ~ [(w(y),0)
=clogc+ (1 — ¢)log(l —¢) + (y — c)logy —

k-1
y—¢ Yy Y
+(k—1—-y+clog(1 m) -y logE (k —y)log(1 — E)
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