Physicochemical Characteristics of Water or Alcohol Soluble Extracts from Laver, Porphyra yezoensis

Sang-Pill Hong*, Jae-Kuen Koo*, Kil-Suk Jo** and Dong-Soo Kim

Fishery Utilization Division, Korea Food Research Institute, Seongnam 463-420, Korea
*Dept. of Sea Food Processing, Kunsan National College, Kunsan 573-420, Korea
**Dept. of Food Science, WonJu National College, Wonju 220-840, Korea

Abstract

To confirm the possibility of seaweed extracts for functional food, water or ethyl alcohol solubles were extracted from laver, Porphyra yezoensis and evaluated those food components such as proteins, carbohydrates, nucleic acids, taurine, pigments and browning extent. The amount of proteins, polysaccharides and nucleic acids extracted decreased with increasing ethyl alcohol concentration, which was maximal when water was used as extraction solvent. The extractability of proteins, polysaccharides and nucleic acids was different between the dried and the roasted laver. Taurine was extracted about 1% from the dried and the roasted laver in the range of 0~70% ethyl alcohol concentration. The amount of carotenoids extracted by 95% ethyl alcohol from the dried and the roasted laver were 146.6 and 138.4mg%, respectively, which was 66~80% of yield extracted by methanol/acetone (1/1) solvent. The browning value of 50~60% ethyl alcohol extraction group from roasted laver was highest among water/ethyl alcohol extraction group. The extraction yield was maximum when laver was extracted with water, and the value was 26.3% for the dried laver and 27.5% for the roasted laver. Organoleptic characteristics from four kinds of extraction groups containing hot water extraction showed that extracts from the roasted laver were evaluated most eminent and thought to be applicable to various preparation of food.

Key words: laver, extracts, alcohol, water

서 론

김(Porphyra yezoensis)는 예로부터 이어져 다시마 등의 해조류와 함께 각종 미네랄, 식이섬유, 조미소스, 영양의 공급원으로 예용되어온 기초식품으로서 최근에는 이들 해조생분이 가지는 생체유지기능에 관해 서도 관심이 고조되고 있다(1,2).

김의 국내 생산량은 95년도를 기준으로 해해해초생산량의 30% 수준인 19만여톤으로(3) 경제적으로도 중요한 위치를 점하고 있으며 향후에도 생산량은 지속적으로 증가할 것으로 전망되고 있다. 그러나 김의 가공이나 이용방법이 단순성을 벗어나지 못하고 있고 또한 제품의 종류 역시 다양하지 못하여 김의 소비는 상대적으로 낮혀지고 있는 실정이며로 김의 활용도를 높이기 위해서는 각종 유용성분의 함유량을 위한 연구가 필요할 것이다.

김에는 단백질, 지질, 식이섬유, 탄수화물, β-carotene, 각종 미네랄, 항산화성 등의 각종 유용성분이 함유되어 있어(1) 이들 성분을 이용하여 각종 스낵류, 유아식, 조미료, 중경제, 영양식품 및 건강기능식품 등 다양한 제품 개발이 가능할 것으로 평가되나 지금까지 김에 대한 연구는 주로 저장중의 아이노산, 항화합물 및 색소류

*To whom all correspondence should be addressed
동성분변화 혹은 당, 유기산, 설탕, 미네랄, 단백질 등 특정성분의 화학적 성향(4-9)에만 차이가 있을 뿐 간유럽성분의 실질적 활용에 필요한 포괄적 추출방법에 대한 검토는 거의 없다.

따라서 본 연구에서는 진조기과 배소기기 대조성으로 식품에 적응가능한 배송율을 용매로 선택하여 능동법으론추출을 행하고 추출물의 수용, 단백질, 당량, 효소, 타우린, 클로로필 및 카로틴의 함량, 간색도 및 주요 추출처리의 관능적 특성을 검토하여 집의 유용성분을 활용한 제품개발에 필요한 기초자료로 제시하고자 하였다.

제료 및 방법

재료

실형에 사용된 진은 서해안에서 양식된 생김을 사용하였고 생김은 해수 및 낙수로 세척한 후 5℃에서 납품전진한 진조기과 진조기의 200℃에서 10시간 가열처리하여 배소질로 하 다음 50mesh로 분쇄하여 사용하였다.

추출 및 농축

진조기과 배소기의 중량의 20-100배 용매를 가하여 20℃에서 24시간 100rpm의 속도로 shaking하면서 행하였으며 추출물은 5,000g 중에 20분간 원심분리한 후, 상등액을 취하여 각종 성분을 분석하였다.

영수추출의 경우에는 100℃에서 3시간 간 5,000×g에서 20분간 원심분리한 후, 상등액을 취하였다. 이 상의 추출물을 때에 따라 rotary vacuum evaporator로 농축한 후 관능검사에 이용하였다.

일반성분 분석

수분은 105℃ 건조법으로(10), 중 질소량은 micro-Kjeldahl법(10) 혹은 Lowry법(11)으로 측정하였고, 중당은 phenol-sulfuric acid 반응법(12)으로 측정하였다.

색소성분의 분석

중 chlorophyll은 Lee 등의 경우와 같이(8) 진조시료 0.2g에 대하여 5mL 증류수를 가하여 10분간 폐포시켜 해산 1g과 함께 마쇄하고 acetone : methanol : 1.0% : 80mL를 가하여 4℃에서 추출한 다음 100mL로 정량하였다. 정량액 50mL에 10% NaCl, 증류수, ethyl ether를 50mL씩 순차적으로 가한 후, 총분이 혼합하여 색소물질을 ethyl ether층에 이행시켰다. 여기에 다시 증류수 50mL로 4회 반복하여 수확하고 NaSO₄로 탈수시험 다음 663mm에서 정량한다. 이때의 클로로필의 E(1%, 663nm)는 84.0의 용매: ether로 하였다. 또한 총 carotenoid 분석은 chlorophyll의 경우와 같이 처리하여 시료를 100mL로 정량하고 정량액 50mL에 7.5g의 KOH를 가하여 총분이 비누처리시 후 10% NaCl, 증류수, ether를 50mL씩 순차적으로 가하고 총분이 혼합하여 색소물질을 ethyl ether층으로 이행시켰다. 색소분석은 chlorophyll 정량과 동일하게 탈수시험 후 447mm에서 정량하였다. 이때의 카로틴의 E(1%, 447nm)는 2.080의 용매: ether으로 하였다(13).

클로로필 및 총 카로틴의 함량은 다음과 같은 계산식에 근거하였다.

클로로필(mg%) = O.D. × vol. × 10⁻⁷/84 × weight of tissue(g)
카로틴의(mg%) = O.D. × vol. × 10⁻⁷/2.080 × weight of tissue(g)

한편 김추출액의 간색화도는 Ogawa 등의 방법(14)에 따라 추출물을 420nm에서 흉광도를 측정하는 방법을 이용하였다.

액산 및 탄수화물의 분석

액산 분석은 액산이 260nm에서 흉수저로이를 보이는 성질을 이용하였으며 액산의 인자 함량은 3%으로 하였으며, 이때 계산식은 S(공) = 30.88(분자량) × 흉광도 × 1(cm)/C로 하였다. 탄수화물은 Fico-Tag 방법으로 분석하였다(18).

관능평가

김추출물의 기본적 특성을 제시하고자 당간의 전문가의 의견을 설계하여 관능평가를 행하였으며, 주로 추출물의 풍미, 색, 항광, 향등에 대한 주관적인 평가를 실시하였다.

결과 및 고찰

건조기과 배소기의 조직학적 특성

진조기과 배소기의 구조는 각기 다른 형태가 있는데, 따라서 배소기는 진조기과 비교적 많은 양의 포프로포와 카로틴의 임대 양소 및 포프로프로포의 일정량이 들어 있는 부분을 대부분 파괴하는 반면, 배소기는 양소의 카로틴이 거의 없는 것으로 알려져 있다. 배소기와의 구조는 주로 미니건-당간의 가열반

Please note that the translation is not perfect and may contain errors due to the complexity of the content. It is recommended to cross-check with the original Korean text.
Table 1. Comparison of pigments of dried and roasted laver

<table>
<thead>
<tr>
<th></th>
<th>Laver</th>
<th>Chlorophyll</th>
<th>Carotenoid</th>
<th>Phycobilin</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.L.</td>
<td>0.56</td>
<td>0.16</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>R.L.</td>
<td>0.52</td>
<td>0.15</td>
<td>0.34</td>
<td></td>
</tr>
</tbody>
</table>

D.L.: Dried laver, R.L.: Roasted laver

Fig. 1. Cell morphology of the dried(A) and the roasted laver(B).

Table 2. The content of proteins, polysaccharides and nucleic acids in laver extract at various concentration of ethyl alcohol at room temperature

<table>
<thead>
<tr>
<th>Components</th>
<th>Concentration(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Proteins D.L.</td>
<td>15.40</td>
</tr>
<tr>
<td>R.L. D.L.</td>
<td>5.50</td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>4.76</td>
</tr>
<tr>
<td></td>
<td>13.36</td>
</tr>
<tr>
<td>Nucleic acids D.L.</td>
<td>1.68</td>
</tr>
<tr>
<td>R.L. D.L.</td>
<td>3.14</td>
</tr>
</tbody>
</table>

Refer to Table 1
김의 지미(담배)는 이노신산, guanylic acid 및 sodium-glutamate에 의한 상승적 효과를 기초로 알라닌, 글리신 및 isofluoride의 감미가 복합되어 발생한다고 주장된 바 있다(15).

따라서 김에서의 해산 추출은 김의 항미에 밀접히 연관되므로 해산의 추출향을 살펴 보았다. 해산은 단백질 및 당당의 경우와 같이 에탄올 융해도 높고 높은 수록 추출성이 낮아지고 있었으며 건조김 보통은 배소강 흔히 전체적으로 높은 추출 성향이 보이고 있었다. 융해가 가장 높아 나타난 융해 융해로 한 치리가의 경우 건조강 18.8mg%, 배소강 37.4mg%였다. 이와 같은 결과는 배소의 해산 함량이 수 mg%로, 나머지 Takashi 등(9)의 결과 보다 약간 높은 수준이었다. 이는 본 연구에서 추출향을 분석할 목적으로 해산의 함량이 8%임을 기준한 260nm 측정법으로 행하였기 때문에 추출도내의 일부투여인 존재가 해산의 함량에 영향을 미치기 때문에라고 생각된다.

Taurine의 추출
김에서 높은 비율로 존재하는 유르시아미노산은 주로 Ala, Glu, Tau 및 Asp이며, 아미도체의 내타나 Ala, Glu 및 Asp의 강의 경미에 중요한 영향을 나타내는 것으로 보고되고 있다(5). 이상의 주요 유르시아미노산 중 타우린은 달석의 방전, 혈장 플레스테롤 수준의 조정, 혈액량 및 당뇨병에 유로한 것으로 알려져 있는 항암아미노산으로(1,15,16) 강에 특히 많은 성분으로 지목되고 있다(19).

Table 3은 타우린의 추출확장이 나타낸 것으로 타우린의 추출은 95% 에탄올 추출추출을 제거한 추출 추출율 간에서 1% 이상의 추출량을 보이고 있었으며 융해 융해로 추출할 경우 건조강은 1.114mg%하에서 배소강은 1.343mg%로, Noda 등(4)이 보고한 1.000mg%보다 약간 높은 추출량을 나타내고 있었다. Side chain sulfate 기름 가중으로 인하여 비교적 강한 수용성인 taurine가 혈액의 성분에서 높은 추출량을 보인 이상의 결과는 타우린이 김조직내에서 유리성으로 존재하기 때문으로 생각된다.

<table>
<thead>
<tr>
<th>Laver</th>
<th>Concentration(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.L.</td>
<td>1,114</td>
</tr>
<tr>
<td>R.L.</td>
<td>1,342</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature (unit : mg%, dry basis)</th>
<th>0</th>
<th>30</th>
<th>50</th>
<th>70</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.L.</td>
<td>1,114</td>
<td>1,090</td>
<td>1,066</td>
<td>1,073</td>
<td>117</td>
</tr>
<tr>
<td>R.L.</td>
<td>1,342</td>
<td>1,255</td>
<td>1,177</td>
<td>1,152</td>
<td>120</td>
</tr>
</tbody>
</table>

1Refer to Table 1.
Table 4. The content of chlorophyll and carotenoid of laver extract by various concentration of ethyl alcohol at room temperature

<table>
<thead>
<tr>
<th>Components</th>
<th>Concentration (%)</th>
<th>Methanol/Acetone (1/1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Chlorophyll</td>
<td>D.L.</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>R.L.</td>
<td>106</td>
</tr>
<tr>
<td>Carotenoid</td>
<td>D.L.</td>
<td>36.5</td>
</tr>
<tr>
<td></td>
<td>R.L.</td>
<td>37.6</td>
</tr>
</tbody>
</table>

1Refer to Table 1

색소성분의 추출

김은 빛의 색백 암체로 붉은 만큼 카르토노이드 함량이 높은데 건조물 100g당 160~200mg% 함유량의 것으로 보고된 바 있다(2). 본 연구에서는 이와 같은 카르토노이드의 에탄올에 의한 추출율을 검토하기도 하였으며, 24시간 추출하여 카르토노이드의 추출성도를 산정하기도 하였다. 제4의 3에 에탄올에 의한 이들 색소 성분의 추출성을 나타내었다. 카르토노이드와 카르토노이드의 물을 용매로 한 처리조건에서 가장 높은 추출율을 보인다는 말에 따라, 30분 동안 끓는 물 50~60% 에탄올 처리가 3회에 따라 가장 높은 농도면에서 그 추출율이 가장 크게 나타나고 있었고 95% 에탄올 농도 이하에서는 전체적으로 배소감작이 약간 높은 추출율을 보였다.

일반적으로 식품분석시 카르토노이드와 카르토노이드의 정량을 위해서는 아세톤과 메탄올을 1:1 비율로 혼합하여 24시간 추출하는 과정이 필요하다(10). 따라서 본 연구에서는 위와 같은 조건에서 카르토노이드 카르토노이드를 추출하고 정량한 결과, 건조물의 경우 카르토노이드 612.5mg%, 카르토노이드 209.1mg%로 나타났다고 있으며 배소감작의 경우는 카르토노이드 367.5mg%, 카르토노이드 178.8mg%로 나타나 배소감작이 배소감작을 배소감작으로서 이들 색소성분이 어느정도 파괴되고 있음을 알 수 있었다. 한편 95% 에탄올을 이용하여 카르토노이드를 추출하였을 경우 아세톤/메탄올 혼합용액을 사용하였을 경우 100%로 할 때 건조물 72%, 배소감작 61% 수준이었다.

추출물의 갑색도

각 에탄올 농도조건에서 추출되는 추출물의 갑색도 (browning reaction)는 추출물 중의 유리당과 각종 아미노산의 반응을 반영하는 것으로 추정할 수 있으며, 따라서 갑색화도는 역으로 이들 성분의 양과도 positive한 상관성이 있다고 할 수 있다.

따라서 본 연구에서는 갑색의 특이 유리형태로 존재하는 아미노산류 즉 Asp, Glu 및 Ala 등과 유리당의 추출율을 반영하는 적도로서 예단을 추출물에 대한 갑색화도를 측정하였다. 제5의 3에 나타낸 바와 같이 에탄올 추출물 중 50~60% 에탄올 처리가 다른 에탄올 처리물에서 비해서 가장 높은 반응을 나타내었으며 특히 배소감작의 경우에는 건조물의 경우에 비해 2~3배 높게 나타났다고 있다. 이와 같이 배소감작 추출물의 갑색도가 건조물의 경우에 비해 높게 나타나고 있는 것은 음료시료 및 단류의 용이한 추출효과 배소감작이 약간 이에 의한 갑색반응이 반영되고 있기 때문에 생각된다.

추출물의 수용

Table 5은 에탄올 농도에 따른 건조물과 배소감작의 추출율을 조사한 것으로 건조물 100g 및 배소감작 100g에 대한 에탄올에 의한 추출효과는 양자 모두 물을 용

Table 5. Browning extent of laver extract by various concentration of ethyl alcohol at room temperature (unit : %, dry basis)

<table>
<thead>
<tr>
<th>Laver</th>
<th>Concentration (%)</th>
<th>0</th>
<th>10</th>
<th>30</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.L.</td>
<td>0.52</td>
<td>0.60</td>
<td>1.07</td>
<td>0.59</td>
<td>0.46</td>
<td>0.35</td>
<td>0.30</td>
<td>0.25</td>
</tr>
<tr>
<td>R.L.</td>
<td>0.52</td>
<td>0.64</td>
<td>1.62</td>
<td>2.15</td>
<td>0.55</td>
<td>0.50</td>
<td>0.46</td>
<td>0.40</td>
</tr>
</tbody>
</table>

1Optical density at 410nm
2Refer to Table 1

Table 6. Yield of laver extract by various concentration of ethyl alcohol at room temperature (unit : %, dry basis)

<table>
<thead>
<tr>
<th>Laver</th>
<th>Concentration (%)</th>
<th>0</th>
<th>30</th>
<th>50</th>
<th>70</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.L.</td>
<td>26.30</td>
<td>15.89</td>
<td>10.16</td>
<td>7.70</td>
<td>5.38</td>
<td></td>
</tr>
<tr>
<td>R.L.</td>
<td>27.53</td>
<td>20.55</td>
<td>14.00</td>
<td>8.65</td>
<td>4.01</td>
<td></td>
</tr>
</tbody>
</table>

1Refer to Table 1
표로 사용한 추출물에서 추출수율이 각각 26.30% 및 27.53%로 가장 높게 나타나고 있으며 50% 에탄올 처리군은 전조기 10.16%, 배소균 14.00%, 95% 에탄올 처리군에서는 전조기 5.38%, 배소균 4.01%로 에탄올 농도가 높음수록 수율이 낮게 나타나고 있었다.

이와 같은 결과는 앞서 각 성분의 추출 경험에서 언급한 바와 같이 수율이 높은 물을 용매로 이용한 처리군은 카로틴을 제취한 단백질, 당당, 핵산, 유리아미노산 등 대부분의 주요성분을 포함하고 있으며, 50% 처리군의 경우에는 단당당 단백질의 함량이 매우 낮은 형태의 각종 비타민성분과 일부 카로티노이드를 함유하고 있고 95% 처리군은 카르로티노이드 등 핵산 및 일부 지질성 성분이 주를 이루고 있기 때문으로 생각된다.

이상의 결과에서 본 실험 성과에 대한 에탄올 농도에 의한 추출은 결국 각 성분의 화학적 특성에 의하여 결정되고 있음을 알 수 있다.

추출물의 관능특성

김의 유효성분은 크게 단백질, 당당, 핵산, 수용성 비타민, 탄수화물, 미네랄 등의 구성물질, 치아, 카르로틴 및 지질성 비타민류 등의 비타민 성질 그리고 유리아미노산, 유리아미노산 등의 물질로 구성되는 성과 비타민성의 유수성 성질의 음용을 가지는 성질의 3개군으로 나눌 수 있다고 생각한다.

따라서 본 연구에서는 0%, 50%, 95% 에탄올의 3개 추출군 영수추출군으로 나누고 이들의 향, 색 및 성을 조사하여 Table 7에 나타내었다.

Table 7에 나타낸 바와 같이 각 처리군의 색 및 정도는 추출조건에 따른 주요 추출성분의 특성(전조기 data 참조)에 따라 다양하게 나타나고 있었다. 한편, 0%, 50%, 95% 에탄올 추출군에서 전체적으로 전조강의 추출율은 이상체 및 이모가 발생한 반면, 배소균 추출물의 경우에는 우수한 항미를 나타내었으며 전조강과 배소균을 100℃ 열수처리한 경우, 양측 모두 강한 점성과 우수한 항미를 나타내는 특성을 보이고 있었다.

이상과 같이 본 연구에서 유효한 것으로 판단된 김의 추출물은 추출수 및 각자의 성분조성상의 차이를 보이고 있으며 또한 김의 추출물에는 높은 항미가 있으나 특히 열수추출군은 수율이 높고 항미가 우수하며 배소균의 50% 에탄올처리군의 경우는 강한 항미를 보이는 특성이 있고 전조강 및 배소균의 95% 에탄올처리군은 비타민 A의 전구체인 β-카르로티노이드나 다량 함유하고 있는 특성이 있다.

따라서 이상의 주요 추출물은 성분조성상의 특성 및 항미, 색, 점성에 따라 식품에 다양한 응용이 가능할 것으로 기대된다.

요약

김의 유효성분을 식품가공에 응용하기 위한 기초적 연구로 전조강과 배소균을 에탄올 농도를 달리하여 추출하고 추출물의 수율, 단백질, 당당, 핵산, 탄수화물, 그로스 및 카르로티노이드의 함량, 감액도 및 주요 추출처리 성분의 관능적 특성을 조사하였다. 단백질, 당당, 핵산 성분은 에탄올 농도가 낮을수록 높은 추출율을 보였으나 단백질의 경우 전조강, 당당 및 핵산의 경우에는 배소균이 상대적으로 3배 이상 높은 추출율을 보였다. 탄수화물은 전조강이나 배소균에 관계없이 0~70% 에탄올 범위에서 1,000mg/kg 이상의 높은 추출율을 보였다. 카르로티노이드의 경우에는 95% 에탄올 농도에 서 전조강 146.6mg%, 배소균 138.4mg%로서 최대값이 보였으나 이 수준은 디에탄올/아세톤을 혼합용매로 추출하는 경우의 66~80% 수준이었다. 유리아미노산 및 바이오산의 반응을 반영하는 갈감도는 배소균을 대상으로한 경우 50~60% 에탄올 추출물이 가장 높게 나타난 반면

Table 7. Characteristics13 of laver extract by various extraction methods

<table>
<thead>
<tr>
<th>Extraction method</th>
<th>Laver (Room temp.)</th>
<th>Extraction time (hr)</th>
<th>Colour</th>
<th>Flavor</th>
<th>Viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>D.L.</td>
<td>24</td>
<td>Red</td>
<td>Fishy</td>
<td>Not viscous</td>
</tr>
<tr>
<td>(Room temp.)</td>
<td>R.L.</td>
<td>24</td>
<td>Black</td>
<td>Savory</td>
<td>Viscous</td>
</tr>
<tr>
<td>50% ethanol</td>
<td>D.L.</td>
<td>48</td>
<td>Green</td>
<td>Fishy</td>
<td>Not viscous</td>
</tr>
<tr>
<td>(Room temp.)</td>
<td>R.L.</td>
<td>48</td>
<td>Black</td>
<td>Savory</td>
<td>Slightly viscous</td>
</tr>
<tr>
<td>95% ethanol</td>
<td>D.L.</td>
<td>24</td>
<td>Deep green</td>
<td>Fishy</td>
<td>Not viscous</td>
</tr>
<tr>
<td>(Room temp.)</td>
<td>R.L.</td>
<td>24</td>
<td>Deep green</td>
<td>Savory</td>
<td>Not viscous</td>
</tr>
<tr>
<td>Hot water</td>
<td>D.L.</td>
<td>3</td>
<td>Brown</td>
<td>Savory</td>
<td>Highly viscous</td>
</tr>
<tr>
<td>(100℃)</td>
<td>R.L.</td>
<td>3</td>
<td>Brown</td>
<td>Savory</td>
<td>Highly viscous</td>
</tr>
</tbody>
</table>

13Laver extracts were concentrated to 40% Brix by rotary evaporator and its color, flavor & viscosity were characterized
14Refer to Table 1
문헌
1. 大石圭一：海藻の科学, 朝倉書店, p.71(1993)
2. 日本藻類学会シンポジウム: 海藻の利用と藻の種類, 32, 74(1993)
3. 농림수산연의 год 3(1995)
10. 韓>c Совет, 菜食教習, 菜食愛好, 7, p.589(1975)
15. 諮問科学研究所：調理科学, 13, 44(1980)
19. 反口守年：タウリン，水産学 シリーズ，恒星社厚生閣，72, 56(1988)
(1996년 12월 3일 정수)