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Abstract

Seismic tomography using the graph theoretical method of ray tracing
is performed in two synthetic data sets with laterally varying velocity
structures. The straight-ray tomography shows so poor results in imaging
the laterally varying velocity structure that the ray-traced tomographic
techniques should be used. Conventional ray tracing methods have serious
drawbacks, i.e. problems of convergence and local minima, when they are
applied to seismic tomography. The graph theretical method finds good
approximated raypaths in rapidly varying media even in shadow zones,
where shooting methods meet with convergence problems. The graph
theoretical method ensures the globally minimal traveltime raypath while
bending methods often cause local minima problems. Especially, the graph
theoretical method is efficient in case that many sources and receivers
exist, since it can find the traveltimes and corresponding raypaths to all
receivers from a specific source at one time. Moreovér, the algorithm of
graph theoretical method is easily applicable to the ray tracing in
anisotropic media, and even to the three dimensional case. Among the
row-active inversion techniques, the conjugate gradient (CG) method is
used because of fast convergence and high efficiency. The iterative
sequence of the ray tracing by the graph theoretical method and the
inversion by the CG method is an efficient and robust algorithm for

seismic tomography in laterally varying velocity structures.
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1. Introduction

Seismic tomography is a useful tool to estimate subsurface seismic velocity structures. It provides a high
resolution image of the earth using the traveltimes given by the seismic wave fields passed through the earth.
Radon (1917) suggested the basic idea of tomography that the propagation of seismic energy through a
medium can be described by an integral or a sum of the properties of the medium over the raypath. He
showed that the properties of the medium can be calculated, if a complete set of sums or integrals is
measured. This idea has been applied to many fields including radio astronomy, material testing, medical
imaging, civil engineering, and geophysical explorations. Aki et al (1977) performed the three dimensional
inversion for seismic structures of lithosphere. Recent examples using the seismic tomography include Bregman
et al. (1989), Lees and Crosson (1989), Lines and LaFehr (1989), Chen et al (1990), Woodward (1992), and
Tura et al. (1992).

In seismic tomography, the medium to be imaged is divided into a number of cells, each of which has the
velocity distribution. For the efficiency of the numerical calculations, we assumed homogeneous and isotropic
rectangular cells. The traveltimes are not linearly related to the slowness, since the raypaths depend upon the
unknown velocity structure. When the dependence of the raypaths on velocity structure can be ignored ie.,
only weakly non-linear cases, the straight-ray can be used to obtain similar results (Dines and Lytle, 1979;
Lines and LaFehr, 1989), and it has been used frequently in both synthetic and real data inversion studies
(McMechan, 1983; Scales, 1987). However, some studies show the straight-ray tomography has shown poor
results in rapidly varying media (Ivansson, 1985, Bregman et al, 1989). Then, the iterative sequence of
ray-tracing and linear inversion i1s necessary to good tomograms of rapidly varying media. Some conventional
methods for ray tracing, however, have serious drawbacks when applied to tomography. Therefore the graph
theoretical method (Moser, 1991) based on network theory is used, which is fast and robust against
inhomogeneity of media.

In geophysical application, sources and receivers are rarely placed on all sides of the imaging region, and
this gives some subregions of very poor ray coverage. Moreover, seismic tomography cannot sometimes find
the true velocity of regions of apparently good ray coverage, if most raypaths are oriented to a specific
direction. McMechan (1983) and Bregman et al (1989) showed that the structures perpendicular to the
raypaths have very poor resolution. Thus, both spatial coverage and angular coverage are important and must
be considered carefully for good results. The source-receiver geometry is an important factor of seismic
tomography. The source-receiver geometry includes VSP (vertical seismic profiling), RVSP (reversed vertical
seismic profiling), and XSP (crosshole seismic profiling). Many studies of seismic tomography have used XSP,
since the local earth structure is usually subhorizontal. RVSP produces seismic sections similar to those of the
conventional VSP, and the RVSP data can be collected more rapidly and economically (Chen et al. 1990). The
combination of XSP and RVSP has advantages in ray coverage and déta collection economy, since it is easily
set by adding the surface receivers to the crosshole scheme. We use this combination scheme and ideal
scheme where sources and receivers exist on all sides of the imaging region.

The iterative sequence of ray tracing and inversion is adopted. We use the graph theoretical method of ray
tracing and the CG inversion method, since the CG and the SIRT(simultaneously iterative reconstruction

technique) show similar results but the CG converges faster than the SIRT.
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2. Graphical Method of Ray Tracing

The forward modeling step associated with ray tracing in the current estimate of seismic velocity structure,
is the most expensive step in any traveltime inversion or tomographic algorithm. It is therefore essential to
choose the appropriate ray tracing method to produce optimal results for the particular model representation.
Two conventional methods, shooting and bending methods, have serious drawbacks. Shooting method causes
the convergence problem when used in laterally varying media, and it cannot find diffracted raypaths and
raypaths in shadow zones. Bending method often reaches the local minima instead of finding the globally
minimal traveltimes of first arrivals,

To overcome these drawbacks, the graph theoretical method is used in this study. The graph theoretical
method is derived from network theory, and it is applied to many branches of science and technology; city
planning, electronic circuit design, and seismic ray tracing. It is based on discrete nature; it represents
continuous objects or properties as discrete ones. In many cases, this approximation is fairly accurate and
efficient. One example is road map, where the network consists of cities and connections between them. And
then we want to find the shortest route from one city to another to minimize the traveltime. In seismic ray
tracing, shortest paths mean the raypaths which have minimal traveltimes. One important property of seismic
ray i1s given by Fermat’s principle; a wave propagates along a raypath for which the traveltime is minimum.
The construction of a raypath connecting two points can be based on this principle. The graph theoretical
method provides an alternative use of Fermat’s principle.

The part of the earth can be represented by a network consisting of points or nodes (Fig. 1). Each node
is connected with finite number of nodes named forward stars, and has traveltime ¢(i). 4t; which denotes the
traveltime between the {-th node and the j-th node, is expressed as,

node ;
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Fig. 1. Schematic illustration of network organization: Each node is connected with neighboring eight
nodes named forward star nodes. Aty denotes the traveltime between the i~th node and the
J-th node.
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Therefore a ray travels from one node to another via the connection. The connections are called arcs. As on a
road map, the connections between two nodes have lengths, the length is to be understood as a weight of
connection. Take for an example, in seismic ray tracing, it is the traveltime of a seismic wave between the
two nodes. In other application of electrical network, the weight can be the electrical resistance. For efficiency
of calculations, a regular distribution of the nodes and straight connections have been proposed. Nakanishi and
Yamaguchi(1986) used the network that eight nodes are distributed regularly on the boundaries of rectangular
cells in which the propagation velocity of seismic wave is constant. In this study, the rectangular grid is used,
and the cells in each of which the seismic velocity is constant and isotropic, are bounded by neighboring four
nodes. The accuracy of traveltimes and corresponding raypaths by the graph theoretical method is dependent
not only upon the total number of nodes but upon the number of forward stars. These factors are known as
space dicretization and angle dicretization. The angular structure of the forward star set is carefully
determined, and the set with 176 forward stars is used in this study.

We define a graph G(N,A), with a set N containing n nodes and an arc set A. The arc set A is usually
incomplete set, since all two nodes are not connected. A network (GAT) is a graph with a weighting
function AT that assigns a real number to each arc. 4T can be represented by a square matrix, At; . For ray
tracing purpose, 4T is symmetric by virtue of reciprocity, 4t; = At , and non—negative, 4t; > 0. And, 4t; =4¢;
= o denotes the case that the nodes i and j are not connected. The forward star.set of the node i, FS(i), is
the set of nodes connected with i. Then, a path P(ID,) has a sequence of nodes which are connected
successively each other.

PUIDyr) = (s i1 iz i3, e ), (2)

where s denotes the source node, r the receiver node and ID the identity of the path. The traveltime t(r)
along the path is defined as the sum of weights of the connections along the path,

KY) = 2 dtean. @

There are many paths connecting two nodes s and r. Next, we find the shortest path that has a minimal
traveltime among these raypaths with an algorithm, a so-called shortest path tree. The shortest path tree
structure enables the shortest paths to be described by using an array pointer, prec(i), the preceding node of |
on the shortest path from s to r. A shortest path can be extracted from this array by repeating {j =prec(i); i
=/ } until { =s. The shortest traveltime from the source point s follows Bellman’s equations:

ti) = min [ t()+4t; 1 (%))  [jEN, (4)
and its initial condition is
t(s)=0. (5)

The nodes are divided into two sets, a set P of nodes with known minimal traveltimes and a set @ of nodes
with not yet known minimal traveltimes. Initially P is empty, and Q=N. The traveltimes of all nodes are
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infinite except for source node, t(s)=0. The preceding history of the source node, prec(s) is its own. Then we
can calculate dt; for jEFS(s), and apply the Bellman’'s equation to this calculation of traveltimes. The
traveltimes and preceding histories of these forward star nodes are updated, since their initial values are
infinite. The traveltime of source node, t(s) is certainly minimal traveltime, so it can be transferred to P. In
next step, there are all nodes except for the source node in the set Q. We find the node with minimal
traveltime among nodes in the set €, then the node can be a source node in the next step. We can also
calculate the forward stars of this node and update the traveltimes and preceding histories by the Bellman's
equation. It is now possible to repeat the nonlinear recursion for all nodes in N, until no traveltime is updated
more. The shortest paths from one node to all other nodes are then calculated although not all information
may be useful. These procedures are known as the Dijkstra’s algorithm (Moser, 1991), and are summarized as;

(1) Initialization
Q=N, tli)=c0 for all (EN
P=2, t(s)=0
(2) Selection
Find i€Q with minimal traveltime (i)
Searching Forward Stars of the node |
(3) Updating
tG) = min { (), )+ At; ) for all j€ [FSGHNQ]
transfer { from @ to P
(4) Tteration Check
if P=N stop
else goto (2).

Typical raypaths in the laterally varying medium are shown in Fig. 2 drawn by the graphical method. The
network used in this model consists of 31X31 nodes, and the number of the forward stars is 176. Diffraction
and refraction at the velocity discontinuities are well represented in Fig. 2. The raypaths can be more smooth
and realistic, if the dense grid is used.

2.0 km/s

3.0 km/a

4.0 km/s

Fig. 2. Raypaths using the graph theoretical method with the network of 31x31 nodes in the laterally
varying velocity structure: The seismic velocities of three regions are presented.
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The constrained graph theoretical method can be applied to anisotropic cases. The algorithm of the graph
theoretical method makes it easy to calculate the raypaths in anisotropic media; i.e. the forward star set from
a specific node has angular characteristics of seismic rays, and if the anisotropy is given a function of the
angle, we easily formulate the shortest path algorithm with anisotropy. Bakus (1965) presented the emperical

equation of anisotropy as;
pd = A + Beos2¢ + Csin2¢ + Dcosd¢ + Esind ¢, (6)

where p is the density of the medium, a the P-wave velocity, and ¢ the orientation of anisotropy. The
raypaths in the isotropic media and in the media with an anisotropic region are illustrated in the velocity
structure (Fig. 3). The dashed lines are raypaths in the isotropic case, and the solid lines are in the
anisotropic case in which the transversely isotropic region with dark gray color exists. The fast velocity
direction is denoted by longer bar in the cross symbol. The ratio of the fast velocity to the slow velocity is
1.2 in this model. The raypaths through the anisotropic region are distorted to the fast velocity direction.

The advantages of the graph theoretical method are; First, all shortest paths of one source are constructed
simultaneously. There -are many receivers for one source in seismic profiling, this method saves computation
time a lot. Second, it needs no special differential equation for its algorithm. Though it seems to ignore the
differential equations even Snell’s law, it gives a direct, practical and accurate results of ray tracing. Third,
this method, robust in presence of velocity discontinuities, gives well-approximated raypaths in rapidly
varying media. Fourth, the graph theoreical method can find the distorted raypaths in anisotropic media, with
small constraints of the standard algorithm. Last, It is easily applicable to three dimensional case with the

same algorithm of two dimensional case.

Horizontal Distance (km)

1 L
0% :

]

2

Fig. 3. Comparison of the raypaths in isotropic (dotted lines) and anisotropic (solid lines) cases : The
region with dark gray color has transverse anisotropy. The longer bar of the cross symbol
indicates the fast direction of the seismic velocity. The fast to the slow velocity ratio is 1.2.
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3. Inversion Methods

The tomographic problem may be stated as “from projections measured outside of an object, find the
interior distribution of the object’s property”. A projection is the sum of an object’s parameters along a given
path. A sum or integral of this type is known as a Radon transform (RT) which is closely related to the
Fourier transform (FT). In many applications, projection data are interpreted using the Fourier transform
theory or numerical inversion techniques. The RT is also known as a slant stack and is equivalent to the T-p
transform in the exploration seismology. Two alternative methods of inverse radon transform (IRT) are the
filtered back projection (FBP) and the circular harmonic decomposition (CHD). These methods are developed
for a continuous medium with full coverage. The series expansion techniques of the IRT are widely used in
many applications. These techniques solve the seismic tomographic problems by row-action methoeds such as
the algebraic reconstruction technique (ART), the SIRT, or the CG algorithm (Hestenes et al, 1952). In this
study, the CG method is used in order to get merit of its fast convergence,

In the series expansion methods, the forward modeling problem results in the matrix equation,
b = Ax, (7

where the column matrix b represents predicted data function, the column matrix x represents the estimated
model function, and the N XM matrix A represents the ray segments.
The anomaly form obtained from the equation (7) is

Ab = AAx. (8)

In order to get a proper from in the CG method, the equation (8) is applied by the transpose matrix of A as

follows,
ATAb= ATAMX (9)

which describes the critical points of [ Ab-AAx ® The matrix A"A is square, symmetric and non-negative.
Equation (9) can completely characterize the least-square solutions of equation (8). If the matrix A has at
least as many rows as columns and is full of rank, the least-square solution is unique and can be directly
obtained by equation (8). On the other hand, if A is underdetermined or rank-deficient, the least-square
solution is not unique. In this case we use the equation (9) for good convergence to the true value. The
convergence of the CG method usually depends upon the initial guess. Hestenes (1975) showed that if the
initial guess is taken to be zero, the CG algorithm converges to the minimum norm, least-square solution.

We suppose that A is an NXM matrix. Applying the CG algorithm to the inverse problem yields the
following generalization: Choose the initial guess x? put s”=b-Ax7, pP=r"=AT(b-Ax"), q¥=Ap”. Then

using the inner product notation, (xx)=x %=X - %,

a® = (1 19 /(g %), (10-a)

k+1) k)| (k+1)_ (K
x*V = xWigktip® (10-b)

k+1) k) (k=) (k)
skt = Mgk lg® (10-¢)
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el o AT (10-d)
A = (pkeD plheD) 0 0y (10-e)
p(’“” - r(k)+ﬁ(k+l)p(k)’ (10-1)
g%V = Ap*, (10-g)

Note that the equation (10) avoids explicit calculation of ATA. The idea is to calculate the residual b-Ax, then
multiply by A" rather than subtracting ATAx from A’b. As seen from equation (10), the CG algorithm
consists of a few simple vector operations.

Simple synthetic calculations using the CG inversion method are performed without ray tracing process.
The model structure is divided by 10%10 cells. Each cell has either of two different velocities, 1.0 km/sec or
20 km/sec. The velocity structure of this model is given in Fig. 4(a). Fig. 4(b) shows the initial guess of
velocity distribution for the inversion process which has a constant value 15 km/sec at every cell. Two
source-receiver configurations are used in this model in order to determine the dependence of inversion
processes on the ray geometry. They are denoted by the configurations (A) and (B), respectively. The
geometry of configuration (A) is the combination of RVSP and XSP (Fig. 4(c)). Fig. 4(d) shows the inversion
result computed by the CG method after 30 iterations. In the lower part of the model the images of the
vertical structures are rather poor, while the horizontal structures are well imaged. We can recall the fact that
the structures oriented perpendicular to the raypaths result in poor resolution. Configuration (B) is an ideal
case so that sources and receivers are located at all sides of boundary (Fig. 4(e)). All regions in the model
structure have good coverage of ray path. Fig. 4(f) shows a clear image obtained by inversion.

@

I

Tl

®

Fig. 4. Straight ray tomography using two source-receiver configurations: (a) presents the original
velocity model used synthesizing traveltimes, (b) presents initial guess in inversion. (c)
presents the practical source-receiver configuration named “configuration (A)” which consists of
XSP and RVSP. (d) presents the tomogram using configuration (A), (e) presents the ideal
source-receiver configuration named ’configuration (B)” where sources and receivers at all
sides of the boundary, and (f) presents the tomogram using the configuration (B).
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4. Modeling and Discussion

Two synthetic models are used for the seismic tomographic inversion with the CG method and the graph
theoretical method. These models are physically unrealistic since the data sets are noise-free. Each model
consists of 30x30 inversion cells, and the network for the shortest path algorithms is composed of 121 %121
nodes. Two source-receiver configurations illustrated in Fig. 4 are used

At each inversion step, the CG minimizes the residual r= [ b~Ax | and updates the velocities from previous
calculated velocities, until the residual is sufficiently small. If the ray segments matrix A is fuily ranked, the
calculated velocity model converges to the true model. Otherwise, the non-uniqueness problem occurs, i.e. the
calculated model may converge to other local minima. Especially, this problem is so serious at earlier
sequences. Thus, proper constraints of the iteration are needed, at earlier step, the iteration is limited to a
small number, otherwise to the contrary.

The velocity structure of an oil-trap model is illustrated in Fig. 5(a), and the wavefronts created by the
source at the upper-left corner is also shown in Fig. 5(b). This shows the distortion of the circular
wavefronts at the velocity discontinuities. In Fig. 5(a), the upper part of the anticline may satisfy the oil-trap
conditions. We can say that the part with the seismic velocity of 2.0 km/sec contains gas, and the part of 2.5
km/sec is an oil-trapped layer. The initial guess of the velocity distribution for the inversion is put as a
constant, 3.0 km/sec, at every cell. The tomogram obtained by configuration (A) is given in Fig. 6(a), and that
by configuration (B) in Fig. 6(b). The differences of the tomogram obtained by the practical source-receiver

geometry of configuration (A) compared with those by the ideal configuration (B) are as follows,
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Fig. 5. Velocity structure of the oil-trap model and wavefronts propagated from a source: (a) presents
a velocity structure of the oil-trap model where numbers denote seismic velocities, and (b)

presents the wavefronts propagated from the source located at the upper left corner.
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(1) The structure of the velocity distribution is not clearly distinct. The boundaries of the velocity
discontinuities are smooth rather than sharp. Especially, the low velocity zone is imaged poorly, since
the first arrivals will not pass through this zone.

(2) The spatial high frequency noise is shown in Fig. 6(a). This fluctuation of the velocity field comes from
a low coverage effect caused by excessive iteration of the inversion step. Thus, the determination of
this optimal iteration number is important.

(3) The erroneous velocity anomaly can be found along the line from the left bottom to the right top (Fig.
6(a)), in spite of the better coverage than any other region. The cells near this line show exaggerated
velocities. The left-lower part shows lower value, and the upper-right part shows higher value than the
true one. From this effects, we can infer that the coverage difference has a considerable effect on the
tomograms. If we have some parts that have larger coverage differences, the velocities of these parts

may be overestimated.

Next, the straight-ray tomographic technique is also applied to imaging this model. The tomograms
obtained by configuration (A) are shown in Fig. 6(c), and those by configuration (B) in Fig. 6(d). These
tomograms are too poor to guess the true velocity structure. Oddly, the tomograms obtained by configuration
(B) are more distorted than those by configuration (A), though configuration (B) has better coverage than
configuration (A). The good coverage means the strong constraint for the convergence. However, this strong
constraint by configuration (B) distorts the tomograms more seriously.

The ore-body model which was shown in Fig. 2, is also tomographically imaged. The tomograms obtained
by configuration (A) is given in Fig. 6(e), and by configuration (B) in Fig. 6(f). Characteristics of these
results are so similar to those in the previous model. The fluctuation of the velocity field can be seen in the
medium with 3.0 km/sec of velocity due to the excessive iterations. More iterations in an inversion step
produce the fluctuation of the velocity field. However they also give the distinct boundaries of the velocity
discontinuities. Near the lower boundary of the model the true velocities of the cells are all 3.0 km/sec.
However, the calculated velocities are lower than that in Fig. 6(e), since the first arrivals mostly pass through

the high velocity region with 4.0 km/sec of velocity.

5. Conclusions

The graph theoretical method is very robust in seismic tomography, and it gives good approximations of
globally minimal traveltimes and corresponding raypaths even in complicated velocity structure. It computes
traveltimes and raypaths of all nodes at the same time. This is inefficient in the case of only one
source-receiver pair, but it is very efficient in case that many source-receiver pairs are available. It can also
find the raypaths in shadow zones. The convergence problems in shooting methods and the local minima
problems in bending methods can be avoided using the graph theoretical method. It gives good approximate
raypaths in the presence of velocity discontinuities. In addition, it gives a versatile tool for the ray tracings in

anisotropic media.
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In applications of seismic tomography, the geometry of sources and receivers mainly affects the tomogram
of the expected region. The expected region must have not only good spatial coverage but also good angular
coverage of raypaths. Moreover, the distribution of the coverage should be smooth, since the velocities
calculated by tomographic techniques may be overestimated by the coverage differences. Seismic tomography
using graph theoretical method and well-prepared source-receiver geometry gives good tomograms of the earth
structure efficiently.
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