Abstract
In this paper, adaptive symbol changes-based medical image compression method is presented. First, the differenctial image domain is obtained using the differentiation rules or obaptive predictors applied to original mdeical image. Also, the algorithm determines the context associated with the differential image from the domain. Then prediction symbols which are thought tobe the most probable differential image values are maintained at a high value through the adaptive symbol changes procedure based on estimates of the symbols with polarity coincidence between the differential image values to be coded under to context and differential image values in the model template. At the coding step, the differential image values are encoded as "predicted" or "non-predicted" by the binary adaptive arithmetic encoder, where a binary decision tree is employed. The simlation results indicate that the prediction hit ratios of differential image values using the proposed algorithm improve the coding gain by 25% and 23% than arithmetic coder with ISO JPEG lossless predictor and arithmetic coder with differentiation rules or adaptive predictors, respectively. It can be used in compression part of medical PACS because the proposed method allows the encoder be directly applied to the full bit-planes medical image without a decomposition of the full bit-plane into a series of binary bit-planes as well as lower complexity of encoder through using an additions when sub-dividing recursively unit intervals.
본 논문은 디지탈 의료 영상을 효과적으로 무손실 압축하기 위한 적용적 심볼 교환에 기반을 둔 새로운 부호화 방법을 제안한다. 제안하는 알고리즘은 먼저 원영상에 차분 규칙 또는 적용 예측기를 적용하여 차분 영상값을 구하며, 이러한 차분 영상값에 대한 개별 context를 결정한다. 다음 단계에서 context하에서 현재 부호화될 차분 영상값과 모델 템플리트상의 차분 영상값들 사이의 극성 일치를 갖는 심볼의 추정을 기반으로 한 적응적인 심볼 교환 과정을 적용하여 예측 심볼을 얻는다. 예측 심볼은 부호화 될 차분 영상값에 대해 가장 빈번하게 발생하리라고 예측되는 심볼을 가리키며, 예측 심볼이 차분 영상값과 동일할 때 부호화 효율이 높게 유지된다. 마지막 부호화 단계에서 이진 적응 산술 부호기는 특정 context가 주어진 차분 영상값의 예측 여부를 판단하는 이진 판단 트리를 사용하여 차분 영상값을 부호화 한다. 차분 영상값 예측 적중율 향상을 통하여 제안된 알고리즘의 부호화 효율은 ISO JPEG 무손실 예측기를 산술 부호기에 적용한 경우보다 약 33% 정도 높아지고, 차분 예측기 또는 적용 예측기를 산술 부호기에 적용한 경우에 비해 약 23% 정도 높아짐을 알 수 있다. 제안된 부호화 방법은 단위 구간 부분할시 곱셈 연산이 아닌 덧셈 연산을 사용하기 때문에 부호기의 복잡성이 낮고 다중 비트 공간의 영상을 이진 공간 열로 분할하지 않고 바로 다중 비트 의료 영상을 부호기에 적용 할 수 있기 때문에 의료 PACS의 영상 압축부에서 사용될 수 있다.