기저의 길이 L=2M인 경우 무손실 행렬의 분해를 이용한 고속 M-대역 이산 웨이브렛 변환 알고리즘

A fast M-band discrete wavelet transform algorithm using factorization of lossless matrix when the length of bases equals to 2M

  • 권상근 (금오공과대학교 전자통신공학과) ;
  • 이동식 (프로칩스 연구소)
  • 발행 : 1997.12.01

초록

The fast implementation algorithm of M-band discrete wavelet transform is propsed using the factorization of lossless matrix when the length of discrete orthogonal wavelet bases equals to 2M. In computational complexity when direct filtering method is employed, the number of multiplicationand addition is (2M$^{2}$) and (2M$^{2}$ -M), respectively. But by proposed algorithm, it can be reduced to (M$^{2}$+M) and (M$^{2}$+2M-1), respectively. and it is possible to reduce the compuatational complexity further when unitary matrix employed to design the discrete or thogonal wavelet basis has the fast algorithm.

키워드

참고문헌

  1. IEEE Trans. on PAMI A Theory for multiresolution signal decomposition:the wavelet representation S. Mallat
  2. Comm. on Pure and Applied Math. v.ⅩLⅠ Orthogonal bases of compactly supported wavalets I. Daubechies
  3. ICASSP93 v.Ⅲ Regular M-band wavalets and applications P. N. Heller(et al.)
  4. APCC93 Wavelet bases design from the PR filter banks viewpoint S-k Kwon;J-k Kim
  5. Electronics Letters A New regular M-band orthogonal wavalet filter bank design using zeros insertion method S-k Kwon;J-k Kim
  6. Linear algebra with applications S. J. Leon
  7. Multirate system and filter banks P. P. Vaidynathan
  8. 금오공과 대학교 석사학위 논문 무손실 행렬의 분해를 이용한 고속 웨이브렛 변환 방법에 관한 연구 이동식
  9. IEEE Trans. on ASSP A new algorithm to compute the discrete cosine transform B. G. Lee
  10. Electronics letter Fast M-band orthogonal wavalet transform algorithm when base length equals 2M S-k kwon(et al.)