초록
전처리된 필기체 숫자 패턴을 3차원 공간에 투영시키고 2차원 평면에 추가되는 z축은 숫자 획의 궤적을 따라가는 순서 인덱스를 나타낸다. 추출된 특징점들간의 거리를 구하고 이 거리 데이터를 정규화 시켜 크기 변화에 적응하고, 정규화된 특정간 거리정보의 통계적 히스토그램을 구하여 인식처리의 입력으로 하였다. 실험에서 200개의 필기체 숫자 패턴 중 100개를 사용하여 특징맵 평균치를 구하여 기준값 특징맵을 구성하였고, 나머지 100개는 인식 실험의 입력패턴으로 사용하였다. 실험결과 임계치 0.20에서 93.5% 인식률, 임계치 0.25에서 97.5%의 인식률을 보였다.
Hand written numeral is projected on the 3D space after pre-processing of inputs and it makes a index by tracking of numerals. It computes the distance between extracted every features. It is used by input part of recognition process from the statistical historgram of the normalization of data in order to adaptation from variation. One hundred unmeral patterns have used for making a standard feature map and 100 pattern for the recogintion experiment. The result of it, we have the recoginition rete is 93.5% based on thresholding is 0.20 and 97.5% based on 0.25.