Regularized iterative image resotoration by using method of conjugate gradient with constrain

구속 조건을 사용한 공액 경사법에 의한 정칙화 반복 복원 처리

  • 김승묵 (영남대학교 전기전자공학부) ;
  • 홍성용 (대구전문대학 전자계산학과) ;
  • 이태홍 (영남대학교 전기전자공학부)
  • Published : 1997.09.01

Abstract

This paper proposed a regularized iterative image restoration by using method of conjugate gradient. Compared with conventional iterative methods, method of conjugate gradient has a merit to converte toward a solution as a super-linear convergence speed. But because of those properties, there are several artifacts like ringing effects and the partial magnification of the noise in the course of restoring the images that are degraded by a defocusing blur and additive noise. So, we proposed the regularized method of conjugate gradient applying constraints. By applying the projectiong constraint and regularization parameter into that method, it is possible to suppress the magnification of the additive noise. As a experimental results, we showed the superior convergence ratio of the proposed mehtod compared with conventional iterative regularized methods.

공액 경사법을 이용한 정칙화 반복 복원 방법에 관하여 논하였다. 기존의 반복 복원 방법에 비하여, 공액 경사법을 이용한 반복 복원 방법은 초선형적인 속도로 해에 수렴한다는 장점을 지닌다. 그러나, 이와 같은 성질로 인해 잡음과 흐려짐현상으로 훼손된 영상을 복원하는 과정에서 잡음의 증폭이나 파문현상과 같은 결합을 갖게된다. 본 논문은 구속 조건을 적용한 정칙화 공액 경사법을 제안한다. 정칙화 공액 경사법에 정칙화 구속 조건과 정칙화 변수를 적용함으로서, 영상에서 윤곽 부분의 평활화없이 파문 현상을 감소시킬 수 있을 뿐 아니라, 가산 잡음의 증폭을 억제할 수 있다는 장점을 지닌다. 실험 결과를 통하여 기존의 정칙화 반복 복원 방법에 비해 본 논문에서 제안한 방법이 수렴비에 우수함을 증명하였다.

Keywords

References

  1. Digital Image Restoration H. C. Andrews;B. R. Hunt
  2. Two-Dimensional Signal and Image Processing J. S. Lim
  3. Venetsanopoulos, Nonlinear Digital Filters I. Pitas;A. N. Venetsanopoulos
  4. Iterative Identification and Restoration of Images Reginald L. Lagendijk;Jan Biemond
  5. Solution of Ill-Posed Problems A. N. Tikhonov;V. Y. Arsenin
  6. SIAM J. Math Anal. v.1 Least-squares method for ill-posed problems with a prescribed bound K. Miller
  7. IEEE Trans. on Computer v.C-22 Application of Constrained least squares estimationto image restoration by digital computer B. R. Hunt
  8. IEEE Trans. on ASSP v.ASSP-36 no.12 Regularized Iterative Image Restoration with Ringing Reduction Reginald L. Lagendijk;Jan Biemond;Dick E. Boekee
  9. IEEE Trans, on Signal Processing v.39 no.4 A Regularized Iterative Image Restoration Algorithm Aggelos K. Katsaggelos;Jan Biemond;Reginald W. Schafer
  10. IEEE Trans. on Signal Processing v.39 no.10 Prototype Image Constrainte for Set-Theoretic Image Restoration M. Ibrahim Sezan;H. Joel Trussell
  11. IEEE IC ASSP Iterative Image Restoration with Ringing Suppression usig the Method of POCS M. Ibrahim Sezan;A. Murat Tekalp
  12. IEEE Trans. on Image Processing v.1 no.3 Method for Chooing the Regularization Parameter and Estimating the Noise Variance in Image Restoration and Their Relation Nikolas P. Galatsaggelos;Aggelos. K. Katsaggelos
  13. IEEE Trans. on Signal Processing v.40 no.9 Simultaneous Iterative Image Restoration and Evaluation of the Regularization Farameter Moon Gi, Kang;Aggelos K. Katsaggelos
  14. Applied Optics v.25 no.14 Noise updating repeated Wiener filter and other adaptive noise smoothing filters using local image statistics Shiaw-Shiang Jiang;Alexander A. Sawchuk
  15. IEEE Trans. on Image Processing v.4 no.5 General Choice of the Restoration Moon Gi, Kang;Aggelos K. Katsaggelos