The adaptive reduced state sequence estimation receiver for multipath fading channels

이동통신 환경에서 적응상태 축약 심볼열 추정 수신기

  • Published : 1997.07.01

Abstract

In mobile communication systems, the Reduced State Sequence Estimation(RSSE) receiver must be able to track changes in the channel. This is carried out by the adaptive channel estimator. However, when the tentative decisions are used in the channel estimator, incorrect decisions can cause error propagation. This paper presents a new channel estimator using the path history in the Viterbi decoder for preventing error propagation. The selection of the path history in the Viterbi decoder for preventing error propagation. The selection of the path history for the channel estimator depends on the path metric as in the decoding of the Viterbi decoder in RSSE. And a discussion on the channel estimator with different adaptation algorithms such as Least Mean Square(LMS) algorithm and Recursive Least Square(RLS) algorithm is provided. Results from computer simulations show that the RSSE receivers using the proposed channel estimator have better performance than the other conventional RSSE receiver, and that the channel estimator with RLS algorithm is adequate for multipath fading channel.

상태축약심볼열추정(RSSE: Reduced State Sequence Estimation) 수신기는 비터비 복호기와 채널 추정기로 구성된다. 이동통신과 같이 채널이 변하는 환경에서는 적응 채널추정기(adaptive channel estimator)로 채널의 변화를 계속적으로 추정해야 한다. 일반적으로 사용되는 채널 추정기는 임시결정된 비터비 복호기의 출력을 사용하여 채널을 추정 하는데, 비터비 복호기에서 잘못된 결정을 내릴 경우 이로 인해 오류전파(error propagation)가 발생할 수있다. 본 논문에서는 좀더 정확한 채널 추정과 오류전파를 막기 위해 경로 메모리를 사용하는 새로운 채널추정기를 사용한다. 이 채널 추정기는 비터비 복호기의 여러 경로중에서 가장 작은 경로를 선택하여 그 경로상의 신호를 이용하여 채널 추정을 행한다. 그리고 채널 추정기의 적응 알고리듬으로서 LMS(Least Mean Square)알고리듬과 Recursive Least Square(RLS) 알고리듬을 사용하여 비교한다. 실험 결과를 통해 제안된 채널 추정기를 사용하는 RSSE 수신기가 기존의 채널 추정기를 사용하는 RSSE 수신기에 비해 더 나은 성능을 나타내는 것을 볼 수있으며, 페이딩이 존재하는 이동통신 환경에서는 LMS 알고리듬이 적합하지 않음을 알 수있다.

Keywords

References

  1. Digital communications J. G. Proakis
  2. IEEE Trans. Inform. Theory v.IT-18 Maximum likelihood sequence estimation of dfigital sequence in the presence of inter-symbol interference G. D. Forney
  3. IEEE Trans. Commun. v.36 Reduced-state sequence estimatino with set partitioning and decision feedback V. M. Eyubo lu;S. U. Qureshi
  4. IEEE J. Select. Areas Commun. v.SAC-7 Reduced-state sequence estimation for coded modulation on inter-symbol interference channels V. M. Eyubo lu;S. U. Qureshi
  5. IEEE Trans. Commun. v.37 Decoding of trellis encoding signals in the presence of intersymbol interference and noise P. R. Chevillat;E. Eleftheriou
  6. IEEE Trans.Commun. v.39 MLSE equalization and decoding for multipath-fading channels W. H. Sheen;G. L. st ber
  7. IEEE Trans. Commun. v.42 no.2;3;4 Joint Data and Channel Estimation using Blind Trellis Search Techniques N. Seshadri
  8. VTC 94,Stockholm A Reduced State Soft Decision Feedback Viterbi Equaliser For Mobile Radio communications Jianjun Wu;A. H. Aghvami;J. E. Pearson
  9. ICC 95 A New Adaptive Equalizer with A Channel Estimator For Mobile Radio Communications Jianjun Wu;A. H. Aghvami
  10. IEEE Trans. Commun. v.43 no.2;3;4 Per-Survivor Processing:A General Approach to MLSE in Uncertain Envionments Riccardo Raheli;Andreas Polydorors;Ching-Kae Tzou
  11. IEEE Trans. Comm v.42 no.2;3;4 Soft-Decision Feedback Equalizer for Continuous Phase Modulated Signals in Wideband Mobile Radio Channels Joseph C. S. Cheung;Raymond Steele
  12. IEEE Trans. Comm. v.COM-25 Maximum-Likelihood Sequence Estimator with Decision Feedbeck Equalization W. U. Lee;F. S. Hill
  13. VTC 94' Applications of Reduced State Sequence Estimation to Terrestrial Digital Radio Links G. Marino
  14. IEEE Trans. Veh. Technol. v.40 no.2 Adaptive equalization for TDMA digital mobile radio J. G. Proakis
  15. IEEE J. Select. Areas Comm. v.7 no.1 Adaptive MLSE receiver for TDMA digital mobile radio R. D'avella;L. Moreno;M. Sant'agostino
  16. VTC'94 Adaptive Channel Equalization for High-Speed Train Weilin Liu;Herve Romanens
  17. Adaptive Filter Theory S. Haykin