R TR BNE 525, pp.180- 190, 1997, R

Robust Autopilot Design for Submarine Vehicles
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NOTATION v measurement output vector
z commanded depth
(Others defined in the main text) R fields of real number
A.B system matrix, input matrix R set of positive real numbers in [0,%0) over
A>0(A<D) positive-definite (negative-definite) R
matrices u vehicle surge rate (forward speed) along
hx b vectors of controlled outputs with the longitudinal axis x
1, nxn identity matrix (the subscript w heave rate (vertical speed) along with the
1s omitted when the size can be axis =z
determined from context) 6, ¢ vehicle pitch angle, pitch angular velocity
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Robust Autopilot Design for Submarine Vehicles

84 O, bow hydroplane angle, stern
hydroplane angle

© angular freguency

[%Ilg] state-space realization of the

transfer matrix C(sI—A) 'B+D
tw(H z=(_£ vawdt)”2<°° “the bounded L,

of the Hilbert
signals w(fel,

norm space of

hA(s) I .= ess sup o LAGw)]; the H. norm of

D¢ u < e
the stable transfer function

matrix A(s)
VA= (120 [ Tracd A*G wAG w)d w))

; the H, norm of the matrix A(s)

5 (A) largest (or maximum) singular

value of A

1. INTRODUCTION

The design of accurate maneuvering control
law, commonly called autopilot for submarine
the
dynamics are highly nonlinear in nature and

vehicle, 1s challenging because system

contain various uncertainties. In fact, a combat
submarine when performing a specific mission
near the sea surface is subject to external
perturbations caused by sea conditions such as
underwater currents and waves. Therefore, the
vehicle autopilot must be capable of exhibiting
considerable robustness to all disturbance effects
and keeping the vehicle in the desired depth.

A comprehensive design methodology has

been developed over the past decades for

control  synthesis, and stability

61,8213}

dynamics,

analysis of submarine systems in which the

PID-type and optimal controllers are widely used

in calm sea conditions. In order to further

improve the autopilot’s performance, multivari

172
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able methods have been applied to the depth-
keeping control of modem submarines'!. Earlier
works in multivariable control synthesis have
mainly utilized a quadratic cost function to
minimize the 2-norm of a system response to
white noise inputs. As shown in references '
the linear quadratic Guassian (LQG) type of cost
often criterion for

function is a practical

minimizing tracking errors or control signal

variations. Although the H, approachm is well

suited to many real systems, it is known that its
stability and performance cannot be guaranteed
in the presence of various uncertainties. As 1s in
case with any submarine, the vehicle system 1s
expected to operate in a highly varable
be effected by

fluctuations at shallow depth. One of the most

environment and will some
important advances in the past decades on the
multivariable control is the development of H.
control theorym"”. It has been recognized for long
that the H. synthesis guarantees the robust
stability and disturbance rejection performance of
the closed loop system in the presence of
uncertainty, but that the H.-optimal controller
typically leads to an intolerably large control
effort.

To quantitatively demonstrate design trade-
offs, the mixed H; and H.. performance criteria
become indispensable. Researchers have devoted
considerable attention over the past several
H)/H. control method for
P9 On the other

noted that many control

years to the mixed

dynamical
must be

uncertain
hand, it
problems

systems

can be cast into multi-objective

characteristics and readily solved by linear
matrix inequality (LMI) approachZ). In addition,
Chilali

Gahinef”, and Iwasaki and Ske]t()nm, have shown

several authors, for example, and

that an LMI synthesis is powerful and useful

tool for multiobjective control problems.
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To date, there has been no paper considering
the LMI-based H./H. approach for submarine

vehicles. This study i1s to design the robust
autopilot of submarines for vertical plane
motions; H, optimal control with a given H..

norm bound of disturbance attenuation via LMlIs.
As a result, the submarnne vehicle maintains a
nearly constant depth relative to the sea surface
and has minimal angular pitch motions as well
in the presence of the uncertainties.

The paper is organized as follows. Section 2
describes the vertical dynamics of the submarine
vehicle. In Section 3, we present a class of
robust linear controllers for the pitch/depth
maneuver. In Section 4, the autopilot perform-
ance has been extensively assessed through a
series of numerical simulations. Finally, the
contributions and conclusions of the work are

summarized in Section 5.

2. SYSTEM DYNAMICS

The standard submarine being considered in
the study is a realistic one but does not
represent any particular model in use. Figure 1
depicts two orthonormal coordinate systems in a
right-handed sense'”; (0- X, Y, 2) is the
inertial reference frame fixed on sea surface with
Z pointing “down”; (o—x, y, z) is the
body-fixed (moving) frame with its origin
located at the vehicle’s center of gravity (or
c.g.). As is usual, the depth/pitch guidance and
control surfaces for a standard submarine
include a set of stern hydroplanes and bow
hydroplanes. Since we are concerned only with
depth and pitch equations of motions, the
roll/'yaw plane dynamics will not be considered
in this paper. It is beyond the scope of this
paper to review the vast literature associated

with the highly nonlinear dynamics of the

-182—

submarine vehicles. The interested reader refers

B.8.11.13),14)

to the references for details.

Mean sca surface
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| Depth

Wave efforts | 5

Current

W efforts

Fig. 1 Submarine system configuration (lateral
view)

To obtain a linear model, we can define the
system state-vector as x=[w, ¢,z 0]7, the
control input variables as #=[38,, 6.7, and the
uncertainty  {or  disturbance)  vector  as
w=[w,,w,]". Considering the standard mane-
uvering conditions along with the desired depth
z and nominal speed «, the linearized form of

the state-vanable mode] can be expressed as:

Jé=Ax+Blw+Bgu (1)

which can be rewritten in a system of four,

first-order, linear, and coupled ordinary
differential equations:
w auz amz 0 amf_g w
q|=|anr aps 0 anzg|iq|,
2 1 0 0 —» 2
o 0 1 0 0 9
b 0 by by
0 b W 2 by by 5 9
+ u (2)
090 W 0 0 s
0 0 : 0 0 ¢

where z, is the coordinate of c.g. in the body
frame z; a;# are the submarine stability

derivatives; and b&; are parameters associated
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with the lift forces of the hydroplanesm. It is
worth noting that the vector w represent all
system uncertainties such as external disturb-
ances due to the sea states, higher-order
unmodelled dynamics, and others. For accurate
pitch/depth maneuver, the robust autopilot must
compensate the uncertainty effects ( w) and
keep the vehicle in the desired depth with a
minimal pitch angular motion. The control
synthesis issues of the submarine will be given

in the next section.

3. MULTI-OBJECTIVE CONTROL
SYNTHESIS VIA LMIS

3.1 Standard regulator probiem

; —=>h
W= P P2 = h:]h
u Pzzf P2
y=x
K

Fig. 2 The multi-objective optimization frame-
work with state-feedback regulator

Consider the general mixed-norm control
synthesis for the submarine autopilot shown in
Fig. 2. First, the generalized plant P (or 2)p) to
be controlled by the state-feedback gain matrix
K(=K) is given by the state-space realization
with assuming full measurements of its state

vector:
x=Ax+B,w+Bu
A= C1x+DuW+ Dlzu
Zp ’ hz = C2x+D21W+ Dgzu (3)
y=x

with a control law u«= Kx

where A, By, B;, C,, C,, Dy, Dy, Dy and

D, are all real matrices of compatible
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dimensions; K denotes the set of all real proper
controllers which achieve internal stability of the
closed-loop system. Moreover, the state-space
realizations of the closed-loop systems are
described by

X A, B,
e lha|l=|C. Do [" (4)
hil Cdz Dz‘z W

where the closed-loop matrices with the
corresponding state vector x. have appropriate

sizes and are further given as

A, B A+B,K B,
C(»): Dc); = C1+D]2K D” (5)
Cdz DLZ C2+D22K Dz]
Let 2e(K) = {A. B, Ce.. D} and

2A2(K) = {A. B, Cs, Dg} denote the state-
space realizations of T,, and T,,, respec-

tively, where the corresponding operators are

given by
A Ccao |Dc.x ] - [ C] +D12K!D11 ]
7 [ AcdBc 1_[_A+BKIB, -
pw ™ Co tDQ ] o Cg +D22K[D21 ]

Then the closed-loop transfer matrix leading
to the lower linear fractional transformation
(LFT) of P and K", if well posed, is defined as

h= T;m.w (8)

where Tw(P, K) =] TS Tz;:zw]r is the matrix
objective function with k2=[%2 A]17. In this
autopilot synthesis, the maps 7, , and T,,
more specifically represent the closed-loop
transfer function matrices from the inputs w to
the controlled performance outputs k.=[z, 617
and ho=[w,q, 8, 8,17, respectively.

With these notations and assumptions in mind,

we are now interested in synthesizing a
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multi-objective (sub)optimization for the subma-—
rine autopilot: Given the augmented system P
and a predetermined scalar number 7 ..>0, find
K for all

w to solve the following control
1,100,

a stabilizing controller admissible
uncertainties
synthesis problem via LMI optimization
W T pwt w7

minimize | T 4, Il » subject to

3.2 H.-(subloptimal compensator design

The standard H. suboptimal synthesis is to
K.(eK)

such that the closed-loop L,-induced norm

find a proper stabilizing controller
gain can be formalized as 11 T, I - =sup
W T, Gwyh {7y . for a given 7 ~€R", where
L, is the Hilbert space of square-integrable
defined

performance, 7 .

R+

should be made as small as

signals over To maximize
possible. In this case, we can obtain the pure

H. optimal problem with K..{(e K) such that

. L inf
N Ty el o 1S minimized; or K.yex 1 Thpll
Y st (057 wou< 7 o) 1s the
T el s,

=7 .opty, Where

minimal attainable scalar value for
Thus, by minimizing the infinity-norm which is
defined as the supremum over all frequencies of
its largest singular value, the performance
outputs due to disturbance inputs are obviously

minimized.
Lemma 1: Consider a LMI given by

JHx) Ji(0)
where Ji(x)=Jx), J{x)=7J(x), and ()

depend affinely on x. Then the inequality is

equivalent to

Ji(x) <0 and Sy (x)=L(0J 'O (0 <0 Q0)

or, equivalently,

~184

N(x) <0 and J;(x) —J3 (0T (0 Jolx) <0

Proof: See Boyd et al.” for more details.
Based on the generalized Bounded Real
Lemmag), the H. performance constraint of the
closed-loop system can be converted to the
following LMIs™,

There

control

stabilizing
which

exists a
K.

Theorem 1:
state—feedback gain

guarantees the closed-loop H. norm of the

performance constraint | T, ! . < 7 . in (6) if

and if only there exist a Lyapunov matrix
X .. > 0 such that the following LMI formulation

holds:

AXo+X Al B, X.CT.
B! vl DL, | <0 (11)
C oXe Do — 7wl

Proof: To establish the global stability for the
closed-loop system (6), we first make use of a

quadratic Lyapunov function candidate

V(t, x) = x5Sx,. with S= ST>0 (12)

where V is a positive-definite for all nonzero
vector X and at least one-time differentiable
function as well. Taking its derivative (12) for
some y.>0 with all wELz[O,OO)Z' yields

V+hthe, — 7w Tw <0 for all teR* (13)

Substituting the closed-loop system X .. in
(6) into the inequality (13) gives
[A.x. +Bw]"Sx. +xIS[A .x, +B.w]

(14)
+[C ceXe D ceW]TIC e xc +D W] — 72w Tw< 0

which can be rewritten in a compact LMI
form
Uy Ue <0
U; U,
where U, =ATS4+SA +CT.C .,
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Uf=B’S+D%.C.., and

After

U, =SB, +CL.D .,

Us=-721+DLD . some algebraic
manipulations with Lemma 1 by defining a new
matrix variable X.(>0) as X.=S"! we can
further simplify the inequality (15) immediately

a

ui

AXo+XLAl B,
B — 7l

T
+—1~(X°°fc“)(cme D) <0
v\ DI,

(16)

Clearly, through the use of Schur complement
formula, the transformed version of the above
inequalities 1s now equivalent to (11) formulated
in terms of the state-space matrices A., B,

Cwo and D .

3.3 H,-optimal control problem

The standard H; optimization problem is to

synthesize a proper stabilizing  controller
K=K (admissible) such that [T ,.Jl, is
minmimized. Without loss of generality, we

assume that D, =0. Then it 1s known that the
H, norm of the closed-loop transfer function

matrix 1$8 given by
IT pull3 = Trace(CoXCL) an

X>0 is the
controllability Gramian of (A, B.) and satisfies

which is  finite, where

the following Lyapunov equation for the
closed-loop system 2 in (7):
AX+XAI+BBI =0 (18)

Let Xu(>X) denote a positive-definite solution

to the Lyapunov inequality:

A X, +X.AT+BBICD (19)
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Then the following property yields:
T 3¢ Trace (CoX,CH) (20)

Moreover, the matrices X,=X7 and R=RT

satisfy the following LMlIs:

AX, +X,AT+BB! (0 21
R> CoXiCo (22)
Then we can readily obtain

T hzwl}%( Trace(R). Also note that the above

inequalities (21) and (22) are equivalent to

AX; tXAL B (g (23)
BI -1
R CaXd sy (24)

(XchT'z Xz )

With the above statements, it is then
straightforward to show the following
theorem.

Theorem 2: There exists a stabilizing

state—feedback gain K.opteK (admissible) such
that the closed-loop norm {|T null2 18 minimized
if and if only there exists symmetric matrices
X;=X; and R=R". Then [T} is the
minimum of Trace(R) subject to a set of LMIs
(23) and (24).

Moreover, there exists a norm bound »eR¥
such that Trace(R) < 7. Clearly, we obtain

IIT yuli3= inf{ Trace(C,X:CH)} = v,  With a

minimal desired upper bound ¥, >20.

3.4 A mixed H,/H.—suboptimal control synthesis

In the preceding subsections, we have

independently formulated the control schemes

mnvolving LMIs: H> optimal and H. suboptimal

design. In what follows we will combine the
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multiple performance objectives into a single
formulation, thus providing a more flexible tool
for submarine autopilot synthesis. Unfortunately,
the set of all matnces (X, X, R, K)
simultaneously satisfying the LMIs given in (11),
(23), and (24) is not convex in general. For the
LMI
, 1t requires that the Lyapunov

X.=X,=X, in the mixed

convex optimization over a set of
3 EARSINTH]
constraints

matrices should be

synthesis problem, where X. 1s a common

Lyapunov matrix. Then we consider a single

Laypunov function  V(t, x.)=x.Xcx., Wwith

Xc=X&>0 for the closed-loop stability.

Defining a matrix variable G as

G=K xX¢

new
with K .= K, we now proceed to
formulate the mixed control criterion involving
LMI based convex optimization.

Theorem 3: There exists a stabilizing
state-feedback control law u=K ,.x, which can
be incorporated into the mixed H,/H. control
synthesis for (5), if and if only there exist the

matrices Xc=X¢&, G, and R=R" such that

inf{Trace(R)} subject to LMIs (11), (23), (24),
and X¢c > 0

with making a change of variable

G=K200XC.

Once solving a set of matrices (Xc, R, G), we

obtain the control gain matrix K,. given by

K .=GXz'. Then the corresponding control
law i1s finally given by u(t) =K sex(8)
= GXZ'x(§).

4. NUMERICAL SIMULATION

It is assumed that a typical operating speed of
the length 80[m] of the standard submarine'" is

#=3.0867[ m/s) for shallow submerged conditions.

—~186—

Then the corresponding state-space matrices for
the depth and pitch model in (3) are given in
Appendix by assuming w=w. All data given are
calculated in dimensionless form with a nominal
operating speed and length. Some numerical
results are obtained by using LM’ Control
Toolbox in MATLAB.

To begin, we consider the open-loop system

without control law. As shown in Fig. 3, the

0.5} *
iy
«© +
g) 0 é)(
©
g +-
"05 i +
0.8 0.6 0.4 0.2 0
Real

Fig. 3 Pole placement plots: open-loop(*), closed

~loop(+)
200 -
(a)
S o0 m\
o] \
O
3 (c)
T
& -200t _ :
p=
400 :
10° 10° 10

Frequency (rad/sec)

Fig. 4 Singular value plots between impulse
input w and h. for: (a) the open-loop,
(b) the proposed H./H. -(sub)optimal,

(c) the H. optimal

S
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Fig. 5 Time responses of z, 8, o, and q to impulse disturbance w for the closed-loop system and the

corresponding hydroplane activities
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Fig. 6 Time responses of z and 8 to step disturbance

corresponding hydroplane activities

open-loop poles are 0, -0.0336%,0.0472, and

~0.0628. In this design, the control engineer is
required to guarantee an acceptable level of
disturbance attenuation ( y.=1) while keeping
the control effort acceptably low: minimization of

the H> norm of Ty, subject to T . wllw<1 (or
0 dB). The closed-loop poles in the complex
plane are now placed at -06191%*/0.11 and
-0.5638 +0.5364 The

state-feedback law with xeR? is given by u(f)

(see Fig. 3). resulting

=Kx(¢), where the control gain matrix 1is
_[53.7 —508.3 26.3 —408.8 AT
Ke=|ps g9.8 6.9 -5.9] For MMO

frequency response objectives, the singular value

plots of the open-loop vs closed-loop svstem

0.12

+ 0.1
0.08
0.06
0.04}

Pitch angle 8

0.02}

10 15 20

Time (secs)

10

Control input (stern) &,

o N A O

15

10 20

Time (secs)

0 5

w for the closed-loop system and the

matrices are displayed in Fig. 4 for the
comparison purpose. As expected, the singular
value plots for the closed-loop system show that
the disturbances are well rejected at the low
frequencies. Furthermore, the measurement noise
attenuation is reasonable at high—frequencies; or
the roll-off is more than 40 dB/decade. The

smaller the infinity norm 7., the better the
system is able to reject disturbances. In fact, the
that can be

performance level

H.
7 =on =0 (see Fig. 4) with the high control gain:

7 ooopt

best

obtained for alone (or Hs-optimal) is

0.0131 —0.1172 0.0102 —1.4946

Kow =100 005 00375 0.1617 04708

188~
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Also note that we can decrease the atten-

uation level 7o (7< > 7wow) at expense of a

minimum  gain  yau in Hy/He. method. In

addition, for the given values 7y.=1 and

7200 = 30.2, we evaluate the time responses of
the closed—loop control system for the impulse—
and step-type disturbances in Figs 5 and 6 along
with reasonable control input activities. From the
simulation results, we can see that the design

objectives are certainly achieved.

5. CONCLUSIONS

This paper 1s concerned with the application
of robust control thoery to design a submarine
autopilot. First, we have reformulated the mixed
H,/H. synthesis problem using LMlIs to provide
the convex suboptimal solution. Next, complete
the

performance in both the time and frequency

simulation  analysis  for closed-loop
domains i1s presented to explicitly evaluate the
vehicle guidance and control performance. It has
been shown that a set of robust controllers we
selected give excellent performance and satisfy
the control magnitudes. Finally, the LMI-based
control approach provides tractable means to
design the robust autopilot posed by several

competing objective functions.
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APPENDIX

All system matrices are clearly defined here:
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—0.038006 0.89604 0 0.0014673
0.0017105 —0.091976 0 —0.0056093

0

0
1

0
0

—3.0867
0

—0.007542 —0.022859
0.001732

0
0

—0.002221
0
0



