BEIBFETISE £114% $2%, pp70~76, 1997. 5

®

Effect of Grid Size on the Computation of
Free-Surface Waves
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1. INTRODUCTION demanded. The method of IAF, a kind of implicit

To overcome the deficiency of computer’'s
hardware, many numerical techniques have been
developed by the finite difference method. But the
method still faces a serious problem because it
requires very long CPU time and a huge memory
the

improvement of the efficiency has been strongly

storage for accurate simulation. Recently,
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schenye, the method of local time step, etc. are the
examples for more efficient computations. Some
comparative calculations by these methods have
been carried out. It seems that IAF
promising to speed up the calculation but its
the

numerical truncation error to be small enough to

is quite

formulation is a little complicated. For

have little effect on the physical performance, the
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mesh size should be strictly considered. The
mesh size must be extremely small for high
demand.
such fine meshes are not always

Reynolds—number flows to meet this
However,
necessary for all the equations and terms. For
example,

equation for the pressure of the non-convective

the truncation errors of the Poisson

terms in Navier-Stokes eguation do not have much
influence on the results as the convection terms do.
The hybrid type of the mesh may make the
computations more efficent. One possibility is to
employ different mesh systems depending on the
characteristics of the equations or the terms. We
call such a method “double mesh method™” or
"triple mesh 1neth()d(:{)”, written in short as DMM
TMM hereafter.
numerical simulations of 3-D nonlinear free-surface

&}

flow problems by boundary element method™.

or It was first proposed for
In
order to reduce the numerical viscosity as much as
possible, a very fine mesh system which contains
about 60 grids” in one wave length 1s used in the
finite difference calculation concerned with the
free—surface equations, while the governing Laplace
equation is solved on a relatively coarse mesh
system which contains about 10 grids in one wave
length by the boundary element method. The
computed results by DMM or TMM were of
enough accuracy and both the computing time and
the size of the memory storage were remarkably
reduced.

In the present paper, a multi-grid on the
free-surface is introduced in the finite difference
solver of the Navier-Stokes equation to improve
the calculation efficiency. As mentioned above, the
demands to the mesh size are not the same for all
the equations and the terms in the finite difference
method. So it is expected that some improvement,
similar to that achieved in the simulation of
free-surface problem by DMM or TMM, may be
made by introducing more fine meshes in the

conventional finite difference method.

2. NUMERICAL STRATEGY

A single grid system® is usually used in the
whole computation whose minimum size is
determined for the numerical diffusion to be less
than that by viscosity. The grid size for the
calculation of the free-surface elevation must be
determined by a different scale, the minimum wave
length. In the simulation, two or three mesh
systems are usually used whose sizes are different
each other depending on the characteristic of
equations. The first one is for the convective terms
in the Navier-Stckes equation, the second one is
for the Poisson equation, and the third one is for
the free-surface equation. The third grid system
requires the Tlinest mesh. In the present calculation,
the third one is numerically confirmed ; more fine
gnds are used to improve the accuracy of
calculation  with
computer storage. One element of the free-surface
is discretized into (4xii,4xjj), (8xii,4xj)), (12xii,4xjj)

fine gnds because the free-surface waves are

free-surface relatively  less

much affected by the grid size in the finite-

difference scheme.  Fig.l shows the shape of

(4xii,4xj}) discretization.
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Fig. 1 Discretization of grid on free-surface(4xii,

4xjj case)

The positions, or Lagrangian coordinates, of each
particle obtained by

integration from some initial position (x%y'p7%) at

(x"py'n7y) are numerical
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time t=0;
n _ 0 t
Xp = Xp + J up-dt
Vo= v o+ Tt (D
=%+ [ w,.dt

where u,vpw, are the velocities in the Eulerian
mesh at the time dependent location of the particle.
In the present MAC-based codes, the particle
velocities are evaluated by two-variable linear
interpolation. Consistently with the forward time
of MAC method, (1)
sequentially as (2).

integration is evaluated

Xln.l = Xin + Uzn-At
yiw1 =yt v AL (2)
Zinvl =z + w'. At

(2) 1s the Lagrangean expression of the kinematic
condition on the free-surface. The condition can
also be expressed in the Euler form as follows;
3/t = —u.3/ex - v.aLfay + w 3
where { and t are the free-surface elevation and
the time respectively. Numerically (2) is equivalent
to (3) if the 1st order upstream difference scheme
is used in (3).
The shape of the free-surface is not known a
priori; it is defined by the position of the marker
particles. We that the

conditions  at

note here
the require
tangential stress and a normal stress which

balances any externally applied normal stress. The

boundary

free-surface Zero

application of these conditions requires a knowledge
of not only the location of the free-surface at each
grid but also its slope and curvature. In our
calculation, the z-coordinate of the free surface is
re—arranged by the bivariate linear interpolation in
proportion to the newly calculated projected area at
each time-step. The details on the free-surface are

described in the appendix.

3. COMPUTATION AND DISCUSSION

3.1 Wigley Case in Laminar Flows

In order to check the convergence of the results,
the wave patterns at 1'=2.5 and 3.0 are compared at
Fn=0.316 and R.=10" where T is the nondimensional
time. It is originated from the previous result”. To
review the effects of more fine grids adopted on
the free surface, four kinds of grids are applied to
the computation. The size of regular grid is
104x29x19  (here =104, jj=29 on free surface).
Fig2 shows the wave patterns obtained by the
regular grid. Fig.3 uses the grid of (4xii,4xjj) on
free surface and gives us about 109 improvement
in the free surface development, compared with
those by regular grid. It means that the size of gnid
very important
particles on free surface. Fig.4 and Fig5 use that of
(8xii,4xij) surface. They the
improvement of about 16% at T=25 and 17% at
T=3.0, respectively. However, the change is hardly

is in developing the marker

on free show

seen in the free-surface patterns after t=3.0. There
seems to be some limitations in the scheme of
finite difference method for the free-surface
generation. Fig.6 uses that of (12xii,4xjj) on free
surface. Some more improvement can be obtained;

21.4% compared with that of regular grid at T=3.0.
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Fig. 2 Free-surface contour by regular grid(ii, jj)

for wigley case
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Fig. 3 Free-surface contour by multi-grid(4xii,
4xjj) for wigley case
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Fig. 4 Free-surface contour by multi-grid(8xii,
4x33) at t=2.5 for wigley case
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Fig. 5 Free-surface contour by multi-grid(8xii,

4xjj) at t=3.0 for wigley case

Fig. 6 Free-surface contour by multi-grid(12xii,
4xjj) for wigley case

3.2 S-103 Case in Turbulent Flows

To confirm the numerical efficiency of the multi
gnid, the high Reynolds-number free surface wave
of 5-103 is also studied. S-103 is an Inuid model
with the beamy/length ratio of 0.09. In the present
case, calculations are made at R.=10° and F.=0.28
with Baldwin-Lomax turbulence model. The resuit
is that at the time T=3.0, when the convergence is
well assured. The grid size of regular type is
74x29x30 and the multi-grid on the free-surface is
numerically tried. Fig.7 shows the wave patterns
obtained by the regular grid. Fig.8 uses the grid of
(4xii,4xjj) on free surface and gives us about 7%
improvement in the free-surface development,
compared with that by regular grid. It means that
the size of gnid i1s very important in moving the
marker particles on free surface. Fig.9 uses that of
{8xii,4xjj) It
mmprovement of about 1926 at T=3.0. Fig.10 uses
that of (12xii,4xjj) on free-surface. Some more

on free-surface. shows  the

improvement is obtained;, 29% compared with that
of regular grid at T=3.0.
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Fig. 7 Free-surface contour by regular grid (i,
i} for S103 case

T

Fig. 8 Free-surface contour by multi-grid (4xii,
4xjj) for S103 case
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Fig. 9 Free-surface contour by mult-grid (8xii,

4xjj) for S103 case

4. CONCLUSION

In order to calculate the free surface wave
efficiently, the multi-grid method is applied for the
-Stokes
equation. The method is to use the multi grid

finite difference solution of Navier

system on the free surface. Through several
comparative computations, it is found that the
method is significantly effective for the free surface
calculation.

— 75 —

Fig. 10 Free-surface

contour by mult-grid
(12xii, 4xjj) for S103 case
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Appendix : Lagrangian Expression of
- Kinematic Free Surface Condition

Suppose Pi (Xi 1,7 1) and P(X,7%) are two
grids on the free surface at t=n as shown in Figll.
At the next time step t=n+l, these mark points
P X1, 251 and  PUX,7%)

move to

In the present research, the x,y
coordinates of the grids on the free surface are
fixed and z coordinate moves freely. The elevation

respectively.

o the new free surface grid @ can be determined

by Pi1and P’ as follows,

Sl a T v ke XiFXD ) (Al)
where
k=(Z"-Zi ' MNX - Xy’ (A2)
= A 77w we ") - At
/baxi (ww ) - dt)
£ can be further expressed as
ST ST w e e (A3)
~(u A ($T ) X )
{1+( Jw/ dx) At} / {1+ Ju/ dx) At}
or
(5" gy
=w’ - (8T ax
{1+ dJw/ dx) At} / {1+ Ju/ dx) It} (Ad)
where
dw/ dx = (w-wi "Axixi 1) (A5)

Ju/ dx = (ui-ui ") (xixi 1)

Fig. 11 Coordinate for free-swface movement



