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ABSTRACT

This paper examines the relation between multidimensional linear interpolation (MDI) and regularization net-

works, and shows that an MDI is a special form of regularization networks. For this purpose we propose a tri-

angular basis function (TBF) network. Alse we verified the condition when our proposed TBF becomes a well-

known radial basis function (RBF).

(Notation)

MDI: Multidimensional Linear Interpolation

LUT : Look-Up Table

RBF : Radial Basis Function

TBF :Triangular Basis Function

P :dimension of input space

N :number of kernels in hidden layer
M :number of training data

A :regularization parameter

I. Introduction

The training process of a neural network may be
viewed as one of curve fitting. In particular, we are
given a set of data points in the observation space de-
fined by specified values of the input signal and a
desired response (target signal), and the requirement
is to find an input-output mapping that passes through
these points. In a corresponding way, the generalizat-

ion process may be viewed as one of interpolation, in
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that the network is called upon to express its response
to test data never seen before [1]. Interpolation techn-
ique is used in the application of signal processing [2],
fuzzy learning [3] and so on. Multidimensional linear
interpolation (MDI) is a useful method for nonlinear
function problem. One of applications of this method
is the estimation of the pump output of artificial
heart, and showed good performance [4]. Recently,
Om et al. showed that MDI is a special form of
Tsukamoto’s fuzzy reasoning [5]. In the other view
point, this paper examines the relation between MDI
and regularization networks, and shows that an MDI
is a special form of regularization networks. For this

purpose we proposed triangular basis function net-
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works. Also we verified when our proposed triangular
basis function (TBF) becomes a well-known radial
basis function (RBF).

This paper is organized as follows. We state an MDI
and regularization networks in section II and IH, re-
spectively. In section IV, we derive the MDI from the
proposed triangular basis function network. In section
V, we summarize and discuss about our study. Fin-

ally, in section VI, conclusions are stated.

II. Multidimensional Linear Interpolation

Before we proceed, it is necessary to comprehend
that what we mean the MDI is the problem of inter-
polating on a mesh that is Cartesian, i.e., has not
tabulated function values at ‘random points in %-
dimensional space rather than at the vertices of a rec-
tangular array. This rectangular data array will be
called a look-up table (LUT) from now, and what we
say LUT is rectangular data array throughout this
paper. For simplicity, we consider only the case of
three dimensions, the cases of two and four or more
dimensions being analogous in every way. If the input
variable arrays are %[ I, x2[ ], and x3,[ ], the output

¥ (x1, x2, x3) has following relation [6].
Yelmlinllr] = y(x1alml, %24, 2347 ). (6]
The goal is to estimate, by interpolation, the func-
tion y at some untabulated point (x:, x;, x3). If x4, x2,
x3 satisfy
Xialm] < x, < xfm +1]
2uln) < x; < xpln +1] )]

2l r]< xS x[7 +11,

the grid points are

n=vlm ln r |
y2=ylm lln lr+1],
y3=%m Jn+ilr |,
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ya=yalm  lin +ijlr +1], 3
ys=vlm+illn Jr |
Ye=%lm+llin l» +1],
yi=yvam+1n+ilr |,
¥s=Yalm +1]lln +1ll» +11.
The final 3-dimensional linear interpolation is
y(x, %z, x3)= (1—)(Q~-)(1-w)y
+(1-w)i-v)( wy:
+(1-u)( )0 -w)y;
+(1-)( ) wy, @
+( W) -w)ys
+ wl-o)( wys
+ W v(0-wy,
+( W) ) wy,,
where
X1 —Xialm]

- xln[m +”_xla[m] ’

Y= X2 — %2[n] )

Zaln +1]~xuln] ’

%3~ 23]
T malr H1]-xalr]

(%, v, and w each lie between 0 and 1.)

We can see the estimated y uses 2" table terms if #-
dimensions, and it satisfies 8 terms in the case of three

dimensions as above.

Il. Triangular Basis Function Network

In this section, we will state radial basis function
(RBF) networks, regularization networks, and the pro-
posed triangular basis function (TBF) networks. Typical
RBF networks and regularization networks are shown

in Fig. 1.
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Fig. 1 (a) Radial basis function networks, (b) regularization
networks. (From [11])

3.1 RBF Networks

RBF networks were originally proposed as an in-
terpolation method, and their properties as interpo-
lants have been extensively studied [7]. It is now one
of the main fields of research in numerical analysis.
RBF networks have been shown to have universal ap-
proximation ability by Hartman er al. [8] and Park
and Sandberg [9][10]. Comparison of RBF networks
and multilayer perceptrons (MLPs) is well summar-
ized in [11]. One of great differences is that MLPs
construct global approximation to nonlinear input-
output mapping. Consequently, they have generaliz-

ation capabilities in regions of the input space where
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little or no training data are available. On the other
hand, RBF networks construct Jocal approximations
to nonlinear input-output mapping, with the result
that these networks are capable of fast learning and
reduced sensitivity to the order of presentation of
training data. The radial basis function (RBF) techn-
ique consists of choosing a function F that has the
following form {12];

AX)= g w; (I X—C;ll) +wo ()]

where {p(IX—Cill)li=1, 2, ..., N} is a set of N arbi-
trary (generally nonlinear) functions, known as radial
basis function, and || || denotes a norm that is usually
taken to be Euclidean. The known data points C;E R
’ i=1, 2, .., N are taken to be the centers of the
radial basis function. Theoretical investigations and
practical results, however, seem to show that the type
of nonlinearity ¢(-) is not crucial to the performance
of RBF networks [12]. Some of ¢(-) are listed in the
followings [13][14](15][16].

1. Linear

o(7)=7, for r=0. Q)
2. Cubic

o) =7* for r=0. 8

3. Thin-plate-spline function
7. r
q)(r):(?) In (7), for some 6>0, and r>0. (9)
4. Gaussian function
r2
e(r)=exp( —?), for some ¢>0, and »>0. (10)
5. Multiquadrics

or)=vr*+c*, for some ¢>0, and »>0. (11)



FIHA D A5 Al 2983 =5 1997 Vol. 7, No. 3.

6. Inverse multiquadrics

1
r)=—==——, for some ¢>0, and »>0. (12
= Tara a2
Property 1 (Factorizable Radial Basis Function):For

a radial basis function ¢ we have

eIX-CI) =12y —c11?) (122 —c213) ... (lxN—CN]?)
(13)

The synthesis of radial basis functions in many
dimensions may be easier if they are factorizable. It
can be easily proven that the only radial basis func-
tion which is factorizable is the Gaussian. A multi-
dimensional Gaussian function can be represented as
the product of lower dimensional Gaussians. Aside
the implementation point of view, since it is difficult
to imagine how neurons could compute G(I1X —Ci?)

in a simple way for dimensions higher than two [17].

3.2 Regularization Networks

The principle of regularization is as follows:

Find the function FA(X) that minimizes the cost fun-
ctional E(F), defined by

E(F)= Es(F) +2Ec(F)

== ¥ [di-FOOF + AlPEN (1)

0=

where Es(F) is the standard error term, Ec(F) is the
regularization term, d; is the desired (target) response,
P is a linear (pseudo) differential operator, and A is
the regularization parameter [11).

We may state that the solution to the regularization
problem is given by the expansion

N

AX)= E w;G(X;C) (15)
where G(X;C) is the Green’s function. For detail il-
lustration of regularization problem and Green’s fun-

ction, see [11]{17]. The RBF is a restricted version of

92

the regularization function. The condition for this is
translational and rotational invariance.

W Translational invariance: The Green’s function G

(X;C) centered at C; will depend only on the dif-

Sference between the argument X and C;;that is
G(X;C)=G(X-C).

8 Translational and rotational invariance: The Green’s
function G(X;C;) centered at C; will depend only

on the Euclidean norm of X and C;;that is
G(X;C) =G X-Cl).

Under these conditions, the Green’s function network

must be a radial-basis function network as follow.
N

AX)= ¥ w:GUX-Cil). (16
i=1

It is important, however, to realize that this solution

differs from that of Eq. (6) in a fundamental respect:

The solution of definition given in Eq. (16) for the

weight vector w. It is only when we set the regulariz-

ation parameter A equal to zero that the two solutions

may become one and the same except wo [11]. We

summarized the difference points in Table 1.

Table 1. Comparison of RBF networks and regularization
networks. N:number of kernals in hidden layer,
M :number of training data, A:regularization par-
amelter.

RBF networks regularization networks

In some cases, bias term is

needed (o). Bias term wo does not exist.

N<M N=M

A#0

A=0

3.3 Triangular Basis Function Networks
Proposed TBF networks are one kind of regulariza-
tion networks. So the structure of TBF networks are

equal to that of regularization networks.
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Fig. 2 Triangular basis function A (7, 2)).

Definition 1 (Triangular Basis Function):

AX;C0) =A(X—C)ar, 2y)

P
=TT ((Xx—Coax, 26 an

k=1

where
r_—H_l_ s for —11<r<0,
7l
Al m)= I—L2 R for 0<r<12, (18)
T

0, for otherwise.

and P is the dimension of input space. See Fig. 2 for

graphical illustration. Then the TBF network is

z

AX)=

wiA ((X_C)<tl, :)2)

= i w; (19)

Ij[] (Xx —Cxnik. rZK))) .

Eqgs (17) and (18) state the followings.

W Proposed TBF can be calculated only by factorized
form if the input space is multidimensional.

m Proposed triangular basis function holds only the
property of translation invariance.

mIf the interval of each dimensional data of LUT is

constant (vl =12;rotational invariance), triangular
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basis function becomes radial basis function.
IV. Expression of Multidimensional Linear
Interpolation from Triangular Basis

Function Network

From Eq. (18)

ot rl<x—t<0,
7l
AE=Da )=y _ 2t for 0<x —t<12
2’ ?
0, for otherwise.
20)
x—{—11)
R, A —tl<x—t<
== for —11<x—£<0,
1——2"L  for 0<x—t<r2
t+)—1 o
0, for otherwise.

We can easily verify that this is equal to {(z), (1~
)} or {(®), (1 =)} or {(w), (1 —w)} of Eq. (4). If we
set w, C, {1, 12) to be value, position, and distances
between C and nearby C, respectively, the output of
TBF network is equal to Eq. (4) for three dimension,
i.e., in Eq (20) w; is corresponding to ¥;, and {(z) or
(1 —2)}{(@) or (1 —~)H(w) or (1 —w)} o A(X—C)ar, 1))
=TIx= to 3((Xx—Cx)nk, 2xy) for three dimensions.
We can also verify that the cases of #-dimension (one,
two, four or more) in an MDI produce the same

results of the corresponding TBF network.
V. Discussion

We showed an interesting result in this paper,
which multidimensional linear interpolation (MDI) is
a special form of regularization networks. If we use
the followings in regularization network, the result is
equal to that of an MDI.

@ Kernel in hidden layer of regularization network :
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triangular basis function as discussed in section
33.

@ w:value in an LUT.

@ C:position in an LUT.

@ (71, 12) : distances between C and nearby C.

At this point, we need to compare both methods.
Even if we can get the same output, an MDI is ef-
ficient than regularization networks because the for-
mer uses valid data whereas the later calculate all pos-
sible basis functions even if they produce zero value.
So even if we can get the same output, the MDI is ef-
ficient than regularization network in the perspective
of operation cost. But, in TBF network we have flexi-
bility of making nonlinear interpolated output simply

by setting a new strategy for (t1, 12) and w.

Vl. Conclusion

It is known that multidimensional linear interpola-
tion is a special form of Tsukamoto’s fuzzy reasoning
[5]. In the other view point, we showed that an MDI
is a special form of regularization networks in this pa-
per. For this purpose we proposed a triangular basis
function (TBF) network. Also we verified the con-
dition when our proposed TBF becomes a well-known
radial basis function. We compared both MDI and
triangular basis function network in section V. Fur-
ther researches are necessary to find the relation be-
tween MDI of tabulated function values at ‘random’
points in z-dimensional space and triangular basis

function network.
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