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ABSTRACT

In this paper we define the t-fuzzy equivalence relation on a set and we prove some properties in connection with

t-fuzzy relations.

1. Introduction

Since Zadeh[6] have introduced the definition of a
fuzzy relation from X to Y as a fuzzy subset of X XY,
the theory of fuzzy relations was developed by [3, 4,
5]. In [4], Nemitz has studied lattice-valued fuzzy re-
lations assuming values from a Brouwerian lattice. In
[5], Sidky defined the t-fuzzy partition on a set and
studied its properties.

In this paper we define the notion of t-fuzzy re-
lation on a set and proved some related properties. In
details, our main results are:

1. For every t-fuzzy equivalence relation on X, let

the fuzzy subset Py, : X— I be defined by

if z€[x]wm
if z&[x]®m

Va, 9>t R(x, 2)
Prg(2)= e

for all x€ X. Then { P,z |x< X} is a t-fuzzy par-
tition of X.

2. For every t-fuzzy partition of X, P={P,€ AX)|{
€I}, the fuzzy subset R: X X X—I by

R(x, )= Vi PN PL(Y), (x, EX XX
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is a t-fuzzy equivalence relation on X.

3. Let R and S be t-fuzzy equivalence relations on
X as a complete Brouwerian lattice [1]-fuzzy
subset of X' X X respectively.

Then R o S is a t-fuzzy equivalence relation on X
iff RoS=SoR

II. Preliminaries

Let L denote a linear lattice with the universal
bounds 0, 1 and # € L —{0} throughout this paper.

Definition 2.1. [5]. (1) Let X be a nonempty set and L
be a lattice. An L-fuzzy subset A4 of X is defined to be
a mapping 4: X— L.

(2) Let AX)={A|4 is an L-fuzzy subset of X}.

Definition 2.2. [5] Let 4 be an L-fuzzy subset of X and
t€L. The subset A ={x€X|A(x)>} of X is called a
strong t-level subset of X.

Definition 2.3. [5] Let X and Y be nonempty sets. A
fuzzy relation from X to Y is defined to be an L-fuzzy
subset of XX Y.

Definition 2.4. [5] If R is a fuzzy relation from X to Y
i.e, RE (X XY), then the fuzzy relation R~'e (Y X
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X) defined by R™'(y, x)=R(x, ), for all x€X and y
€7, is called the inverse relation of R.

Definition 2.5. [4] Let R€ (X' xY) and SE Y X Z).
The max-min composition of R and § is defined as a
fuzzy relation S o R from X to Z such that

So R(x, 2)=V, R(x, YAS(, 2), V(x, DEX X Z.

Definition 2.6. [4] Let X be a nonempty set and REF
(XX 7Y), Ris called an L-valued fuzzy equivalence re-
lation on X iff

(1) R is reflexive i.e, R(x, x)=1, Yx€ X.

(2) R is symmetrici.e, R"'=R.

(3) R is transitive i.e, Ro RER.

Definition 2.7. {5] Let X be a nonempty set. The class

P={Y;€ P(X)|i€ I} is called a t-fuzzy partition of X iff
(1) for cach x€ X, there is Y;€ P such that Y (x) > ¢.
(2)for cach Y; € P, there is x € X such that Yi(x)>¢.
(3)if 2+ 7, then Y{x)AY ;(x)<¢, YxEX.

. Main Results

Definition 3.1. Let RE AX X X). R is called a t-fuzzy
equivalence relation on X iff

(1) R is t-reflexive i.e. R(x, x)>t, VxE X.

QR '=R

(B)RoR<R

Theoreme 3.2. Let RE F(X X X) be a t-fuzzy equival-
ence relation on X, Then R ={(r, )| R(x, )>t} is

an ordinary equivalence relation on X.

Proof. Firstly, for each x € X, since R is t-reflexive, R
(x, x¥)>1¢, and so (x, x) € R, which implies R is re-
flexive.

Secondly, let (x, ¥)E R'. Then R(x, y)>¢. Since R
is symmetric, R(y, x)=R"'(x, )>¢, and so (¥, x)=
R, which implies R’ is symmetric. Finally, let (x, )€
G', and (y, 2)€R". Then R(x, y)>¢ and R(y, 2)>¢.
By transitivity of R, R(x, 2)>¢, and so (¥, 2ER,
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which implies R is transitive. Therefore, R is an ordi-

nary equivalence relation on X.

Theorem 3.3. Let R€ F(X X X) is a t-fuzzy equivalence
relation on X, and let [x]s={yE X|R(x, ¥) > 1}, xEX
Then {[x]#|x€ X} is an ordinary partition of X.

Proof. For each x€ X, since R is t-reflexive, R(x, x)>
¢ and so x€ [x]7, which implies X< U [x]%.

We claim that [x]7=[y]7 if [x]® N[y]l% #4. Sup-
pose that [x]& N[y]= # 4, then there exists € X such
that z€ [x]= N[¥]®. This implies that R(x, z)>¢ and
R(y, 2)>t.

By transitivity of R, R(x, y)>¢. If 2’€{x]7, then
R(x, 2)>t. Combining R(x, ¥)>t and R(z’, x)>1,
which implies R(z’, ¥)>1, hence [x]% S[y]%. Simil-
iarly, interchanging the roles of x and y, we get that
[¥]® Slx]%. Therefore, [x]z S[y]l®.

Definition 3.4. Let RE (X X X) be a t-fuzzy equival-
ence relation on X. For each x € X, we define a fuzzy
subset Pz X—1 by

if ze€[xlm
if 2&[x]®

vR(x, a9>¢ R(x s Z)
P(2) = 0

Theorem 3.5. If [x]7 N[yl% #4, then Pui;(2)= Py
(2), zEX.

Proof. Let y€[x]%. We show that Pj,5(2) = Ppy15(2),
z€ X. If z€[x]w, then R(x, 2)>¢. By transivity of R,
z€[ylx which implies Plﬂf,(z)=1"|y;;,(z). Otherwise,
since Y€ [x]w, z&[y]®, which implies P;(2)=0=
Piy15(2). Therefore, Pi:(2) = Py;(2) for all ze€ X,

Theorem 3.6. P={P.;|x€ X} is a t-fuzzy partition of
X.

Proof. Firstly, for each z€ X, Since R is t-reflexive R
(z, 2)>t, which implies Pi;;(2) 2 R(z, 2)> ¢.
Secondly, for each P, € P, we have Pp)(2)>¢.
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Finally, we show that [x] & N[y]% #¢ implies Pp5(2)
APy(2) £t, z€X. If z€[x] R, since {[x]rixE X} is
an ordinary partition of X, then z& [y]%, and so Pyy)5
(2)=0, which implies Pjyjz(2) A P1(2)=0. If zE€[y] 7,
then z &€ [x]®%, and s0 Pp;(2) =0, which implies Pz
() APy5(2)=0.If z& [x]z and 2 & [y] %, then Pp;(2)
=0= Py5(2), and s0 Piz(2) A\ Py(2)=0. In which
case, we have P 5(2) A Piy(2) St for all zEX.

Theorem 3.7. Let P={P,e AX)|i€l} be a t-fuzzy
partition of X. Then there exists the correspondent

t-fuzzy equivalence relation on X.
Proof. Define a fuzzy subset R: X X X— 1 by

R(x, ¥)=V; P{x) A Pi(y), (x, Y)EXXX.

We show that R is a t-fuzzy equivalence relation on
X. Firstly, let x€ X. Since P is a t-fuzzy partition of
X, there exists a P;€EP such that Pi{x)>¢. This
implies that R(x, x) = V; Pi(x) A\ Pix) = V; P{x) 2 P{x)
>t. Therefore, R is t-reflexive.

Secondly, by definition, R(x, ¥)= R(y, x).

RoR(x, ¥)=V.exR(x, 2 A\R(z, ¥)
= V,e (VAP{x) A P{2))
AVAP(2 A PL)))
£ Veex(Vi(PAX) A P{2) A PAy))
Z Vi Veed(Pix) A PLY)
= Vi(P{x)AP{y))= R(x, )
for all (x, Y)EX X X.

Finally,

Therefore, R is transitive. Consequently, R is a

t-equivalence relation on X.

Theorem 3.8. Let R be a t-fuzzy equivalence relation
on X and let £>s, 0=<s<1. Then R is a s-fuzzy equi-
valence relation on X, and P; S Ps, where P;={Pzl
Y€ X}, Po={Ppzlx€X}.

Proof. To show that R is a s-fuzzy equivalence re-
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lation on X, it suffices to show that R is s-reflexive.
For each x€ X, since R is t-reflexive, R(x, x)>1,
which implies R(x, x)>>s. Therefore, R is s-reflexive.
The rest is clear. If ¥€ [x]®, then R(x, ¥)>¢. Since ¢
>s, which implies R(x, ¥)>s and so y€ [x] %, there-

fore, [x]® S[x]®%. Consequently, we have P;S P;.

Theorem 3.9. Let R and S be t-fuzzy equivalence relat-
ions on X as a complete brouwerian lattice [1]-fuzzy
subset of X X X respectively.

Then Ro S is a t-fuzzy equivalence relation on R
iff RoS=SoR )

Proof. Suppose that Ro S is a t-fuzzy equivalence re-
lation on X. Since R, S and R oS are symmetric re-
spectively, we have RoS=(RoS) '=S-loR"!=
SoR. Conversely, suppose that RoS=SoR. We
show that Ro S is a t-fuzzy equivalence relation on
X. Firstly let x€ X. Since R and S are t-reflexive re-
spectively, R(x, x)>¢, and S(x, x)>¢, and so (R0 S)
x 0=V,Skx, ARy, x)ZR(x, x)ASkx, x)>t
which implies Ro S is t-reflexive. Secondly, by hy-
pothesis, RoS=So R=(RoS)"!. Finally, we show

that R o S is transitive. For this consider

(RoS)o(RoS)=Ro(SoR)oS by lemma 2.7 of
Sidky [5]

=Ro(RoS)oS

S RoS.

Therefore, Ro.S is transitive. This completes the

proof.

Corollary 3.10. Let R be a t-fuzzy equivalence relation

on X. Then R o R is t-fuzzy equivalence relation on X.
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