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The Partial Ordering of Positive Lower Orthant Dependencel)

Tae-Sung Kim2 and Dae-Hee Ryu3)

Abstract

In this note we develop a partial ordering among positive lower orthant dependent
distributions with fixed marginals. This permits us to measure the degree of positive
lower orthant dependence. Some basic properties and preservation results are derived.

1. Introduction

Let X=(X,,-,X,) be a random vector. It is said to be positively upper orthant
dependent ( PUOD) if for every x= (%;,",%,) P(X> 22T L, P(X;>x) and it is
said to be positively lower orthant dependent (PLOD) if for every x= (x;,*",X,)

P(X<x)>T%~,P(X,;<x;). The random vector X is said to be positively orthant
dependent (POD) if X is PUOL and PLOD (Ahmed et al.(1978)). The Positive dependence
has been continuously examined by many authors. See Block and Ting(1981), Chhetry,
Kimeldorf and Sampson(1989) and Barlow and Proschan(1981). By way of some motivations,
we have to compare the degree of positive dependence of two sets of positive lower orthant
dependent random vectors. In bivariate case, Ahmed et al.(1978) have already studied very
extensively the partial ordering of positive quadrant dependence. Ebahimi(1982) has also
introduced the partial ordering of negative quadrant dependence.

In this note we introduce the notions of the positive lower orthant dependence ordering,
and derive some basic properties and preservation results. Before concluding this section, we
introduce the concept of positive quadrant dependence ordering, which be useful in what
follows.

Let B, = B,(F,G) denote the class of bivariate distribution functions(df’s) H on R?
having specified marginal df’'s F and G where both F and G are nondegenerate.
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Definition 1.1(Lehmann, 1996) The pair (X, Y) or its distribution H is positively quadrant
dependent (PQD) if
P(X<x,Y<9)2P(X<x)P(Y<y) for all (x,y)< R% (L1)

Let B; denote the subclass of By where H is PQDU. Suppose H; and H, both belong to B;.
Definition 1.2(Ahmed et al, 1979) The bivariate distribution H;(or random vector X) is said
to be more positively quadrant dependent than H, (or random vector Y) if
H,(x,y) = H,(x,y) for all (x,y) < R% (1.2)
We write H; > ™ H, (or X>7y),

2. Some Properties

Let A= B(F,, -, F,) denote the class of n—variate distribution functions(df’s) H on
R” having marginals Fy, -, F, . Let j denote the subclass of 5 where H is PLOD.

Definition 2.1 Suppose H; and H, both belong to B. The distribution H; (or random
vector X) is more positively lower orthant dependent than H, (or random vector Y) if
H (ecp,,¢,) 2 Hy(ey, o+, cy) for all (cy, -, c,) € R". 2.1

We write H; > "PH, (or X>PPy).

Example 2.2 Let Hy(x;,,x,) =T Fi(x;) and H' (x;,, x,) = A Fi(x)),
where A F;(x;) = min (F(x,), -, F,(x,)). Define

Hy=(1—a)Hy+eH ,0<a<1. 2.2)
Then H,, H" and H, beling to f and Hy < PLODS'HaS PLOD 11*(see Section 4).

Example 2.3 Consider a Farlie-Morgenstern system with distribution
H,(xy, %2, x3) = Hy(x,, x5, 23) [1 + a{(1 — Fy1(x1)) (1 — Fy(x))
+ (1= Fy(x))(Q = F3(x3)) + (1 = F1 (%)) (1 — F3(x3))  (23)

+ (1= Fi(%))(1 = Fa(x2)) (1 — F3(x3))}]
where (< a< 1, and Ho(xl.xz,x;;)=F1(x1)F(x2)F3(x3) (See [7D). Then Hg, Haez
and H,> K,

Remark 2.4 In 23)if 0< a; < @, <1 then H, <PH,
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Example 25 Let X~U+ V¢ where U= (U, -, U,), e=(1,--,1) and V and U,
i=1,-+, n are independent random variables having distributions U~MN0,d), V~MNO0, &§%).

Then X~N(0, I+ 8°€ ¢). By adjusting all the one dimensional marginals as N(0, 1)
N0, I+ 8% ¢ e) is written as
Ny(0,(1-p)I+p€e),0<p<1 (2.4)

It is obvious that N,(0, (1—p)I+ p£ e) is PLOL and that
N, (0, (1—p) I+ 1€ €) = P N(0, D).

Remark 26 In (24) if 0<p,{p<1 then N, < PLOD N, .

Proposition 2.7 Let X=(X;,,X,) and Y=(Y,,,Y,) be two n—dimensional
random vectors with distribution functions F and G, respectively.

F(xy, ", %5) 2 G(x, >+, %) for all x= (x1,-,x,) € R"
if and only if

E{I,(X)}= E{I.(X)} for all lower orthants L, (25)
where the lower orthants L are the sets of the form {x:x, <a,, ", x,< a,} for some
fixed ga= (a,, -, a,).

Theorem 2.8 Let the distribution H; of X= (X, -, X,) and the distribution H, of
Y=(Yy,,Y,) belong to 5. Then X =P Y if and only if

E{N =1 (X))} 2 E{N jo; h;(Y))} (2.6)
for every collection {h;, -, h,} of univariate nonnegative decreasing functions.

Proof. (=) Assume X = "*%? Y. let ¢ be an m—variate function of the form
olxy, -, X,) =T =1 hi(x;), x R",
where the A;'s are univariate nonnegative decreasing functions. Every such function can be

approximated by positive linear combinations of indicator functions of lower orthants. Thus
using (2.5) we obtain (2.6).

(¢=) Assume (2.6) holds. By taking £;(X;) = I|x.<e) and h;(Y;) = I[y,<.) We have
E[ Nl ix<a1] 2 E[ W i1 Iy ai]
= E[Ix,<a. X<a1] 2 E[I1v,24,. -, V.ga.1]

#P(Xlsal; “tty anan) = P( Ylsalv "t Ynsan)-

Thus X =P Y and the proof completes.
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From Theorem 2.8 we obtain the following example:
Example 29 Let X= (X, ,X,) and Y= (le, -, Y,) be two nonnegative random
vectors. If X > ©°P ¥ then according to (2.6) we have

Elexp(—s Zla;Xi)} >FE{exp (—s gla,-Y,-)} for all s=>0,

whenever a; =0, 7=1, -, n since exp(—sa;x;) are nonegative decreasing functions.

Theorem 2.10 Let X and Y be two nonnegative #—dimensional random vectors and let
both the distribution H; of X and the distribution H, of Y belong to 4. Then

X =" Y if and only if for all s
P(max {a1 Xy, -, a,X,} <s) =2 P(max {a, Y3, ", a,Y,} <s) 27
whenever a;>0,7=1, *, n.
Proof. (=) Assume X =" ¥ Then for a;>0,i=1,+,n
P(a,X,<s,,a,X,<s)2P(a,Y,<s,,a,Y,<5s)
which yields
P(max {a1 X, -, a,X,} <s)2P(max {a; Y1 <s, -, a,Y,} <s).
(&) Assume that (2.7) holds. Then for a;> 0

P(a1 X <s,,a,X,<s)=2P(a,Y1<s,,a,Y,<5)
which implies

P(Xlgcl,"',XnSCn)EP( YIScl,‘“, Y,,SC,,) for all (Cl,“',Cn)ERn.

Thus the proof is complete.

We now pay our attention to a simple but important property of the class z
Theorem 2.11 The class £ is convex. Let H, , H; belong to z and for define 0 < @< 1,
H,=aH, + (1—a)H, (2.8)
ie. a convex combination of H; and H,. Then H, belongs to A.
Proof. Since H, and H, € §, (28) may be written as
H/(x;,,x,) Z2ali Fi(x)+(1—a)T ':~=1.F,-(xl~)

2.9
(where F's are the marginals of H;, i=1, 2) so that H, is PLOD. Moreover,
limH,,(xl, ey, x,:) = (IF,'(x,') + (1 — G)F,'(x,') = F,-(x,-), (2.10)

J=1,n; j#e

It follows from (2.9) and (2.10) that H, € §.
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In addition, it can be easily be show that the class TS is weakly compact. These two pro-

perties of 6 indicate the possibility of representing each of the PLOL class in terms of their
extreme points. This area of research may lead to a wide variety of useful inequalities gover—

ning PLOD distributions.
Theorem 2.12 Let H, and H, belong to 5 and define H, as in (2.8). Then

Hz > PLOD Hd > PLOD Hl-

3. Preservation Results

‘Theorem 3.1 Let X=(X;,*,X,) and ¥Y=(Y,,--,Y,) be PLOL and let for each
i, i=1,-,n, X;=?Y,(=" stands for the same distribution). Assume that Z= (Z,,
., Z,) is independent and Z is independent of X and Y respectively. Then (X, 2 is
more PLOL than (Y, Z).
Proof. First note that for each component of (X, Z) and (XY, Z) have same pairs of
marginal distributions and that (X, Z) and (X, Z) are PLOD. Next,

P( X,<c), ' Xn<Cp, ZySCpi1,"" s Zm=Cnim)

= P(Xlsclo "'. ancn)P(lecrHl’ "t stcn+m)

2})( Ylsclo "ty Ynscn)P(lecn+lr "ty st Cn+m)
=P(Y'<c, ", Yp<c,, Zi<Cpsr, s Zp=Cpim)
for all ( ¢y, ) Cny Cni1s "> Cusm) € R®™™ . This completes the proof.

Next, we show the PLOD ordering preserves under transformation of univariate increasing

function.
Theorem 3.2 Let X = (X, , X,) be more PLOL than Y= (Y, -, Y,). Assume that

fi:R—R, i=1,-,n, are increasing functions. Then (fi(Xy),,fr(X,)) is more
PLOD than (f1(Y}), ., fx(Y,)).
Proof. First note that (A (X)), , fo(X,)) and (A (Y1), -, f(Y,)) are PLOD and
that for each 7, i=1, -, n, fi(X;)=f(Y;) since X;=2?Y, Next,

P( A(X)) < ¢, ful X) < c4)

=P(X; < A7), Xu< fo 7 (ey)) 3D
2P(Y1 Sfl_l(cl),"', Y,,Sf,,_l(c,,))
= P(fl( yvl)S cl’"'-fn( Yn) < cn)
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for all (¢, -, ¢,) € R" . Thus the proof is complete.

Lemma 3.3 Let X be more PLOD than Y. Assume that Z is PLOL and independent of
X and Y. Then X+ Zis more PLOL than Y+ Z.

Proof. Let H be the joint distribution function of Z and H;(z;) be the marginal distribution
of Z. Then

P(Xi+Zi<c) = [ PX<ci— 2,0 Zi= 2) dH (2:)

= fZP(X,-s ci— z;)dH(z;)

(3.2)
= f_mP( Yi<c¢i—z;)dH(z;)
= P( Y,""Z,'S C,’).
Thus for each 7, =1, ,n, X;+ Z;=¢ Y;+Z, . Next, 7
P( ,(le"+ Zi<g) = f_m"- f_wP( QX;S ¢ci— 2zl Z=2)dH (21, z,)
= fm o fm P( rj]XlS C,'_z,') dH(Zl » 0 Zn)
- e = (3.3

=T ?=1[ f:oP(XiS ci— zi)dHi(zi)]

=N LP(X;+Z;<¢)].
Thus X+ Z is PLOD. Similarly, Y+ Z is PLOD.
Note that the second equality of (3.3) follows since Z is independent of X and that the

inequality follows since X is PLOL. As in (3.3) we have
P( QlXi+ Z{S C[) = fj:o--- f—ooP( Q}Xis Ci— Z,‘)dH(Z,‘, B zn)

= f_m"' f_mP( O] Yi<ci—2)dH(z;,,2,) (34)
= P( QIYF"Z;'S .
for all (c¢;, -+, ¢,) € R". Thus the proof is complete.

Combining Theorem 3.2 and Lemma 3.3 we have the following result:

Corollary 34 Let X=(X;,-,X,) be more PLOL than Y= (Y;,--,Y,) and let
fit R R be increasing functions. Assume the one dimensional random variable Z is
independent of X and Y. Define for each ¢ U;=f(X,)+Z, Vi=f(Y,)+Z Then

(Ull Tty Uﬂ) P PLOD( Vlv tt Vn)-
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Theorem 3.5 Suppose that X is more PLOD than U and that Y is more PLOD than V.
Further, let ¥ be independent of X and U, respectively and U be independent of V.
Then X+ Y is PLOL than U+ V.

Proof. Assume that X is more PLOL than U. Specifying Z to be Y and applying

Lemma 3.3 we obtain

X+Y=2PPy+y (3.5)

Next, by the assumption that Y is more PLOD than ¥, specifying Z to be U and
applying Lemma 3.3 yield

Y+ U=22PVY+ L. (36)
By combining (3.5) and (3.6) we complete the proof.

Lemma 36 Let Z= (Z,, ., Z,) have independent components, and Z be independent of

X=(X;,,X,) and Y= (Yy,-,Y,). Let fi: R’ R be increasing functions. If X is
more PLOLD than Y then
(FAC(XL, 2, (X, Z)) 2 PP ([T, Z0), , fu( Yo, Z,)) (37

Proof. Let H(z,, ', z,) be the distribution of Z and H;(z;) be the marginals.
First, by the monotonicity of f; {x;: f;(x;, 2;) < ¢;} is lower interval and hence

P(f(X,Z)<c) = f_w P(f(X;, z) < ¢il Zi= z)dH{(2))
= [ PU(Xi 20 < c)dH(z)
= f P(£fi(Y;, zp) < ¢;)dH(z;)
= P(fi(Y;, Z) < c).
Thus fi(X;, Z;) and fi(Y;, Z;) have same distributions. Next,

POV Zose) = [ [T PCQ (X 2) S c)dH (i, 2,)

2 M ?=1[ f:ﬁ P(fi(X;,z) < ci)dHi(zi)]

=N 5 P(f(X;, Z) < ci).
Thus (fl(Xl Zl fn(anZ)) is PLOL. Slmllarly: (fl(Ylvzl)"",fn(anZn))
is PLOL. Finally, for all (c;, ", c,) € R".

PCA XL ZY<e) = [ [T PO (X 20 < e))dH (2, 2)

> J‘: f:P( f:\l(ﬁ( Y, 2) € ¢))dH (zy, -, 2,)
= P( t(jl (fl( K- Z:)S C,').

Thus the proof is complete.
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Theorem 3.7 Assume
() X=(X,,-,X,) is more PLOD than Y= ( Yy, e, Y,).
() U= (U, -, U,) is more PLOL than V= (V,, -, V,).
(#) U= (U, -+, U,) is independent of X and Y.
(#v) Y is independent of V.
(v) U and Y have independent components, respectively.
Then for increasing functions f;: R*¥—R i=1, - . ",
(A(X), U), -, fu( X, Uy) 2 PP (£1( YL, V1), o, Fu( Y, Vo)),
Proof. Define f;(s, t) = f/(¢t,s). Then by Lemma 3.6

(A(X), U, -, Fa( X, U)) 2 PP (/YL U, o, /(Y Up))
= (AU, Y1), -, £ (UL, Yy))
2PLOD(fl'( Vi, Yl)» '"rfn'( Vn’ Yn))

= (fl( Yl; Vl). '"sfn( an Vn))
Thus the proof is complete.

In Theorem 3.8 we will show that the PLOD partial ordering is preserved under limit in
distributions:
Theorem 3.8 Assume that H, and H, have same pairs of marginals. Let H, be more
PLOD than H," for every = and H,, H,” converge weakly to H, H’, respectively. Then

H is more PLOD than H'.
Proof. Since H, and H,  have same pairs of marginals H and H’ also have same pairs

of marginals. H and H' are PLOD since H,, H, are PLOL.
Denote by C(H) and C(H ') the sets of continuity points of H and H’, respectively. Let

D= C(H) (\ C(H"). 1t follows from assumptions that
H(cy,,c,)2H (¢, , ¢cy) for all (¢, ,c,) € D.

Since [ is a dense set in R”"
H(Cl ’ -“1 cﬂ) 2 H'(Cll ."’ cn) for all (Clv “.s Cn) = Rn-
Thus H is more PLOL than H'.

Before we state the next theorem we need a definition and a result of Ahmed et al. (1979).
Definition 3.9 (Barlow and Proschan, 1981) A random variable Y is stochastically
increasing(SD) in the random variable X if E[A(Y)|X = x] is nondecreasing in x for all

real valued, nondecreasing integrable functions J.
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Lemma 3.10 (Ahmed et al, 1979) Let (£) X= (X,, -, X,) given A, be a conditionally
POD, (i) X;tstin Afor i=1,--,n Then X is POL.

We may now define the class —,3—,1 by E= {Hy: H;(o0, -, 00, x;,00, ) = F;(x,l1)
for all i=1,-,n, Hy|Ais PLOD, and X/'s are SI in A}. The following theorem shows
that if two elements of —B; are ordered according to 2PLOE,
then after mixing on A the resulting element in ‘5 preserve the same order.

Theorem 3.11 Let X|A=(X,,,X,)|Aand YIA=(Yy, -, Yn)M belong to B,
and let X|A =" ¥| A for all A. Then, unconditionally, X, ¥ belong to 6 and

¥ > FLOD y
“Proof. First note that X, ¥ belong to p according to Lemma3.10. Next,

PO Xi<x) = BIPC[} Xi<x1 D]
>ELP( (3 Yi<x1 D1 = P ("wlysy,

Thus the proof is complete. The inequality follows from assumption that X|A =7 Y| A

4, An example-

Subramanyan(1990) has already studied positive duadrant dependence in three demensions.
For completeness we repeat some of the arguments given in that paper and construct
some PLOL ordering using them. Consider the case where each of X, ¥, and Z assumes
only two values 1 and 2, say. Let Py=PX=i,Y=j,Z=k), i=1,2,; j=1,2,;k=1,2.
The joint probability law of X, Y, and Z is written, for convenience,

p=[ Py Puz Py Pm] _
Py Py Py
In terms of this new notation, F is PLOD if /

Py 2pan ; 4.1
Py+ P2 pha (4.2)
Py + P 2pn (4.3)
Py + Py 2ain (4.4)

where p,=P(X=1);q;=KY=1);n=KZ=1);p,=1—p;02=1—q;; and r,=1—n.
Let 0<$,<1,0<g,<1,and Q<7 <1 be three fixed numbers. Let B, a1, n1) be the
collection of all trivariate distributions P = (P;) with support contained in {(Z, 7, k); i =
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1,2,7=1,2, and £=1,2} such that Fis PLOD, and the marginal distributions of X,
Y and Z under F are p,,1—p,;a,, 1—¢q,, and 7y, 1— 7, respectively.

Any P= (Py) € B(#1, a1, r) must satisfy the inequalities (4.1), (4.2), (4.3), and (4.4).
Also, due to marginality restictions, we should have

P+ P+ Py <, (4.5)
Py +Pp+Py<aq, (4.6)
P+ Py + Py <n. 4.7
The following are the natural nonnegativity conditions.
Pyp=20, (4.8)
Py 20, (4.9)
Py >0. (4.10)

All these inequalities (4.1) to (4.10) involve Py, Py, Pin, Py only. If some four numbers
Py, P, Py, Py satisfy the inequalities (4.1) to (4.10) then one could define

P =p—(Py+ P+ Pyy), (4.11)
Pyy=a,— (P + Py + Py,), 4.12)
Py =7, — (Py + Pig + Pyy) (4.13)
Poyy=(1—p—a—n)+ Py + (P + Py + Py + Pyy) . (4.14)

The numbers Py, Py;, and Py); will be nonnegative. If Pyy = (), then

P= (ng)E-B(ﬁl.ah r).
Select 4 inequalities from (4.1) to (4.10) and replace the inequality signs by equality signs.
Solve the resultant system of 4 linear equations in 4 unknowns Py, P2, Py, and Py,.

If there is a solution, and this solution satisfies the remaining inequalities, determine Py,
Py, Py, and Py as per the equations (4.11), (4.12), (4.13), and (4.14). If Py,>0, then
P= (P € (1, 0-1, 7).
Let us define the joint distributions
Fix,5,2)=F(x)AFy)AFy(2), (4.15)
Fy(x,y,2)= F(x)Fy(y)F3(z), for all x,y and z, (4.16)
where Fi(x)=0,if <1, =p,if 1<x<2,and =1if x>2; and Fp(y) =0 if
Y1, =qif 1<y<2, =landif y22 and F3(z)=0if 2<1, = if 1<2<2, and
=1if 22>2; and for any two numbers «, v, «At stands for the minimums of the numbers
u and v. Fy(x,y,2) is the upper Frechet bound with marginals F;, F; and Fj.

An explicit computation shows that the corresponding distribution Py(= Fy) has the follo-wi
ng entries
Py = niAaAr; Py = p1Agy — Py, Py = piAr, — Pyy;
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Py = aqiAn — Pyy; Ppy = n — P — Py — Py
Pyy = g1 — Pz — Py — Py Pip = 1 — Pin — Pz — Py
Pyy =1— Py — Py — Py — Py — Pip — Py — Py
It can be verfied that the upper Frechet bound is PLOL with same marginals Fi, Fy and
F5. Similarly we obtain the corresponding distribution Py(= Fy)
han hiairy hide 71de7e

P 0=
Da1"1 D21V D202 D227
and verify that P, is PLOL with same marginals F;, F, and F3. By tedious computations
we derive
PU ZPLODP ZPLOD PO
where P+ P, and P+ Py . To purse the above approach we consider the following PLOD

‘table when =g == % .

< Table >
redii n- 313840
SR r-33004
R P=d300d
re i P-31514
|l e ol A-die]
2003

Remarks < Table > reveals the following insights :
1. Note that the joint distribution P, is the upper Frechet bound, that is, Py= P4 > PLOD p.

for all 7, 0<:<9.
2. It can be possible to look for convex combinations of Py and some or all of Py, Py, Py,

P;, P,, Ps, P, P;, P;. For instance, any convex combination P, = APy + (1 —4)Py with
0<A<1is PLOD and Py =P p,>"%p,
3. It is clear that Py=>TFPp,>Pp, for i=1,2,3,4,5,6,7,8,9.

Acknowledgments. The authors wish to thank the referee for a very thorough review and
comment of this paper.
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