참고문헌
- The Annals of Statistics v.19 Approximation of density functions by sequences of exponential families Barron, A. R.;Sheu, C. -H.
- A Practical Guide to Splines de Boor, C.
- Journal of the American Statistical Association v.83 Optimal rates of convergence for deconvolving a density Carroll, R. J.;Hall, P.
- Nonparametric Density Estimation : The L₁view Devroye, L.;Grorfi, L.
- The Annals of Statistics v.19 On the optimal rate of convergence for nonparametric deconvolution problems Fan, J.
- Measurement Error Models Fuller, W. A.
- The Annals of Statistics v.21 Optimal rates of convergence for nonparametric statistical inverse problems Koo, J. -Y.
- Computational Statistics and Data Analysis v.21 Bivariate B-splines for tensor logspline density estimation Koo, J. -Y.
- The Annals of Statistics Log-density estimation in linear inverse problems Koo, J. -Y.;Chung, H. -Y.
- Statistics and Probability Letters v.26 Wavelet density estimation by approximation of log-densities Koo, J. -Y.;Kim, W. -C.
- Journal of statistical Computation and Simulation v.54 B-spline deconvolution based on the EM algorithm Koo, J. -Y.;Park, B. U.
- The Korean Journal of Applied statistics v.10 Log-density estimation based on the Fourier expansion Koo, J. -Y.;Lee, K. -W.;Park, H. -S.
- Computational Statistics and Data Analysis v.12 A study of logspline density estimation Kooperberg, C.;Stone, C. J.
- Journal of Computational and Graphical Statistics v.1 Logspline density estimation for censored data Kooperberg, C.;Stone, C. J.
- Canadian Journal of Statistics v.17 A consistent nonparametric density estimator for the deconvolution problem Liu, M. C.;Taylor, R. L.
- Journal of the American Statistical Association v.77 Deconvolution of microfluorometric histograms with B-splines Mendelsohn, J.;Rice, J.
- Numerical Recipes in FORTRAN(2nd edition) Press, W. H.;Teukolsky, S. A.;Vetterling, W. T.;Flannery, B. P.
- Density Estimation for Statistics and Data Analysis Silverman, B. W.
- Journal of Royal Statistical Society. Series B v.52 A smoothed EM algorithm to indirect estimation problems, with particular reference to stereology and emission tomography Silverman, B. W.;Jones, M. C.;Nychka, D. W.;Wilson, J. D.
- Statistics v.21 Deconvoluting kernel density estimators Stefanski, L.;Carroll, R. J.
- The Annals of Statistics v.18 Large sample inference for logspline model Stone, C. J.
- Contemporary Mathematics v.59 Logspline density estimation Stone, C. J.;Koo, C. -Y.
- Journal of Royal Statistical Society. Series B v.55 From image deblurring to optimal investments: Maximum likelihood solutions for positive linear inverse problems Vardi, Y.;Lee, D.
- The Annals of Statistics v.18 Fourier methods for estimating mixing densities and distributions Zhang, C. H.