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Robustness for Pairwise Multiple Comparison Procedures
with Trimmed Means under Violated Assumptions :
Bonferroni, Shaffer, and Welsch Procedure

Hyunchul Kim!

Abstract

Robustness rates for repeated measures pairwise multiple comparison procedures
were investigated in a split plot design with one between- and one within-subjects
factor using untrimmed and trimmed data. Five factors were manipulated in the
study: distribution, sphericity, variance-covariance heteroscedasticity, total sample size,
and sample size ratio. The Welsch test (W) and the Welsch test on trimmed data
(Wgrr) performed better than the other procedures, but had a liberal tendency. The
trimmed difference score Bonferroni procedure (Bpr) was a good choice in some
conditions.

1. Introduction

There has been a limited amount of research on the robustness of pairwise multiple
comparison procedures when the normality and/or multisample sphericity assumption are
violated in a split plot design. However, results in Keselman, Keselman, and Shaffer (1991),
Yuen (1974), and Wilcox (1992) suggest a Welch-type test using trimmed means and
Winsorized variances may be robust for long-tailed distributions. Studies show that long-
tailed distributions are common in psychometric and educational measures (Micceri, 1989;
Wilcox, 1990). Consequently, the development and evaluation of multiple comparison
procedures using trimmed means and Winsorized variances is of interest in connection with
testing contrasts on levels of the within-subjects factor.

Kim (1997) investigated four pairwise multiple comparison procedures in a split plot design
with one between— and one within—subjects factor. Both Type I error rates and power for
procedures were estimated when the assumptions for the procedures are violated. In
comparing Bonferroni procedure (B), Welsch’s step—up procedure (W), Shaffer’s procedure
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following the ¢-adjusted F test (S( &), and Shaffer’'s procedure following the corrected
Improved General Approximation (CIGA) test (S(C)), Kim concluded that Welsch’'s (1977a)
procedure provides adequate control of Type I error rates and is typically more powerful than
the other procedures. Conditions in which dispersion matrices were equal were included as
were conditions in which dispersion matrices were unequal. Conditions with nonsphericity and
symmetrically distributed multivariate nonnormal data were included.

The classical statistics such as the sample mean and variance are sensitive to outliers.
Trimming and Winsorization refer to the removal and modification of the extreme values of a
sample. Let y@ denote the ith order observation in a random sample of size N with yo <

vo £+ + + £ yon. The a-trimmed mean for a = g/N or the g-times trimmed mean is
— 1  ° 4
Ve = (N-2g) izﬂy @i)- (1.1

The g-times Winsorized mean and sum of squared deviations are, respectively,

— _L xsf:g ‘ )
Ywe™ N [gy (g+1)+ i=g+ly (i)+gy (N—g)], (1.2
and,
— —g _ _
SSD we=2(Y g+~ Vwg)’+ i__l\gﬂ(y 0~ Ywe) 8 veg)— Ywe)’ (1.3)

Tukey and McLaughlin (1963) found that the Winsorized sample variance is a suitable
estimate of the variance of the trimmed mean.

Three variations of the Bonferroni procedures were included: (a) the Bonferroni (B), (b) the
raw score trimmed Bonferroni (Bgrr), and (c) the trimmed difference score Bonferroni (Bpr).
Six variations of the Shaffer’'s modified sequentially rejective Bonferroni (MSRB) procedures
were included: (a) Shaffer’'s MSRB procedure using &-adjusted test for omnibus test (S( €)),
(b) Shaffer's MSRB procedure using &-adjusted test for omnibus test with the raw score
trimmed data (S( €)r1), (c) Shaffer’'s MSRB procedure -using é-adjusted test for omnibus test
with the trimmed difference score (S( €)pr), (d) Shaffer’'s MSRB procedure using the CIGA
test for omnibus test (S(C)), (e) Shaffer’s raw score trimmed MSRB procedure using the
trimmed CIGA test for omnibus test (S(C)rr), and (f) Shaffer’s trimmed difference score
MSRB procedure using the trimmed CIGA test for omnibus test (S(C)pr). Two variations of
Welsch’s step—up procedures were included: (a) Welsch’s step—up procedures (W) and (b) raw
score trimmed Welsch procedure (Wwrt). To produce a trimmed version 20% trimming was
used.

The Bonferroni procedures were included primarily because multiple comparison procedures
using the Bonferroni critical value are well known and commonly employed. The potential

advantage of S( &) over B is that the critical values for the S(€) procedure are uniformly
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less extreme than the critical values for B. The potential disadvantage is that a lower ranked
test statistics can be declared nonsignificant because of a nonsignificant test in a prior step.
Nevertheless, MSRB procedures tend to be more powerful than Bonferroni procedures
(Keselman, 1994). The potential advantage of Welsch’s step-up procedures is better power
than Shaffer’s procedures because the step-up procedures declare significance by implication;
in contrast Shaffer’s procedures declare nonsignificance by implication.

2. Method
2.1 Multiple Comparison Procedures

1. Bonferroni procedures
Three variations of the Bonferroni procedure were investigated. In the first procedure, the
test statistic was

21 yu— Yie)lJ
V?[( Si+ St —2S jkk’)/nj]/Jz )

2.1

In equation (2.1) _S;jk and Sp’ are the mean and variance of yx at the jth level of the
between-subjects factor; Spw is the covariance between yk and yix at the jth level of the
between-subjects factor. The critical value was %t , s ,, Where @ = 2 aw / [K(K-1)] is

the per comparison error rate and G is the familywise error rate and

[2X Sp’+ Sy’ =28 ju)/my)]*

> [ Si’+ Sjk'z—zsjkk’)/nj]z
J nj_l

1% (22)

This procedure is developed by Keselman, Keselman, and Shaffer (1991). Subsequently, this
procedure is referred to as the Bonferroni (B) procedure.
In the second procedure ;,-k and ;ik' were replaced by g-times trimmed means and Sjkz,

Sjk‘z, and Sjw were replaced by Winsorized variances and covariances, respectively. The
Winsorized covariances is defined as
S. "=Z ( Yijk'_ ;jk‘)( Yijk’.— _3—’11(" (2.3)
ik ] (nj"‘zg—l) ’ '

where yi is a Winsorized data point and ;ik', _y-jk" are Winsorized means. The critical

value was *t, s, The degrees of freedom V2 are obtained by replacing S,'k2 and S by
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Winsorized variances and covariances, respectively; the quantities nj-1 were replaced by
ni-2g-1. The second procedure is referred to as the raw score trimmed Bonferroni procedure
(Brr).

Let dw = yk — yw. In the third procedure the test statistic was

$aikk'/.]
—\]—Z[ Sjkk"z/nj]/Jz '

(2.4)

where d,-kk»‘ is the trimmed mean of diw = yik — v and Sjw” is the Winsorized standard

deviation of dixw = yik - ys. The critical value was =+t e,./2.v; Where

[3 S/ (n;— 20)1°

[ Sjac"*/(n;—2g)1°
D .

The third procedure is called the trimmed difference score Bonferroni procedure (Bpr).

V3= (25)

2. Shaffer’'s MSRB procedures
The MSRB procedure is a modification of the Bonferroni procedure which is implemented in

several steps. The first step is to test Hy: Zl= c e e = ;K In the first MSRB procedure,

Ho was tested by using the ?—:-adjusted test. If Hp is not rejected, all pairwise comparisons
are declared nonsignificant. If Ho is rejected, test statistics for the K(K-1)/2 pairwise
comparisons are calculated and ranked by their p values from smallest to largest. In the first
MSRB procedure the test statistic was calculated by using equation (2.1) and its degrees of
freedom were calculated by using equation (2.2). The critical value for the test statistic with

rank i (i = 1, ..., K(K-1)/2) is  #t, 5. ,. In this study, K = 4 for K = 4, K(K-1)/2 = 6

and there are six ¢ ¢1 = c2 =3 = ¢4 =3; cs = 2; and cs = 1. Testing is conducted in steps.
If the test statistic in the ith step is not significant, all subsequent steps are declared
nonsignificant. The first MSRB procedure is denoted by S( €).

In the second procedure MSRB procedure, Hp is tested by using a trimmed €-adjusted test.
That is, in the calculation of F and &, trimmed means replace means and Winsorized
variances and covariances replace variances and covariances. In subsequent steps the test
statistics and degrees of freedom employed in Bgrr are used. The second MSRB procedure is
denoted by S( &rr. The third MSRB procedures, denoted by S( €)pr, used the trimmed &
-adjusted test in the first step; in subsequent steps the test statistics and degrees of freedom

used in Bpr are used.
The fourth MSRB procedure is the same as the first, except the CIGA test developed by
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Algina (1994) based on Lecoutre’s (1991) results replaces the e-adjusted test. The fourth
MSRB test is denoted by S(C). In the fifth MSRB test, denoted by S(C)rr, a raw score
trimmed CIGA test is used to Ho. In this test, the means, variances and covariances used in
the CIGA test were replaced by trimmed means and Winsorized variances and covariances,
respectively. The test statistics and degrees of freedom employed in the subsequent steps are

the same as in S(&gr. In the sixth MSRB procedure, denoted by S(C)pr, the trimmed
CIGA test is again used in the first step. The test statistics and degrees of freedom

employed in the subsequent steps are the same as in S(®pr.

3. Welsch’s step-up procedures
In Welsch’s step-up procedure the means for all K levels of the within-subjects factor are
ordered from smallest to largest. The procedure begins by testing all Z-ranges,

Y i — —f(k)* (1 £ k £ K), of the ordered treatment means of each level of the

within-subjects factor, Y < Y@ <+ -+ +< Y . If the 2-range is significant, the

members of the corresponding pair of treatments are declared different. Also declare the
p-ranges containing that 2-range significant and all sets of treatments which contain that
significant subset as heterogeneous by implication without further tests. If at least one
2-range is not significant, then proceed to test 3-ranges. In general, test a p-range

?(kﬂ,_l)'—- ?(k)' (1 £ k £ K-p+l, 2 £ p £ K), if that p-range is not declared
significant by implication at earlier steps. If Y(kﬂﬂ)‘— —’f(k)* is significant, then declare

the pair of treatments corresponding to ?(kﬂ,_n' and _Y(k)' as different. Also declare
all sets of treatments containing that subset of p treatments as heterogeneous and the
corresponding g-ranges containing that p-range for all ¢ > p as significant by implication
without further tests. Welsch proposed using @, = pa / K for 2 £ p £ K-2, and ax1 = 0k =
a. Welsch (1977b) tabulated the critical values &,,, (2 < p < K) based on Studentized
range statistics for k = 2, 3, .., 10, v = 5, 6, .., 20, 24, 30, 40, 60, 120, o0, and a = .05 which
he obtained using Monte Carlo simulations. Critical values in this study were obtained by
interpolation in the table.

In the first variation of Welsch’s step—up procedure, denoted by W, the test statistic was

calculated using (2.1). The critical values, denoted by £,, ! V2 are presented in Keselman
(1994) for integer values of Vi. In the second variation of Welsch’'s procedure the ordered

means used in the first variation are replaced by Z;tjk /J, where ;tik is the trimmed mean
}

for the jkth cell of the design. The test statistic for comparing means is the test statistic

used in Brr. The critical value is £, l,2/ V2. This procedure is referred to as the raw score
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trimmed Welsch procedure (Wrt). In both procedures the critical values were forced to follow

a monotone sequence. That is £, , was set equal to &,,_,, whenever &, , < &,_., (3

<p<Kands =1, 2 3.

2.2 Design

The conditions included in this study were based on those in Kim (1997). In all conditions
J =2 and K = 4. Four distribution types (g = 0and h = -244, g =0 and h = 0, g = 0 and
h = .109, and g = 0 and h = .35), three levels of sphericity of the common v-c matrix (€
96, .75, and .40), three levels of the degree of the heterogeneity of the v-c matrices (2122 =
1:1, 1:2, and 1:5), two levels of total sample size (N = 40 and 60), and three levels of sample
size ratio (n1, ng) = (28, 12), (20, 20), and (12, 28) for N = 40, and (42, 18), (30, 30), and (18,
42) for N = 60 combine to give 216 experimental conditions.

H

2.3 Simulation Procedure

The data for each condition that involved multivariate normal data were generated by using
the following steps:

1. For the jth level of the between-subjects factor Zj, an n;X4 matrix of independent
normally distributed variates was generated. The NORMAL function in SAS (SAS Institute
Inc., 1989) was used to generate all variates.

2. The matrix Z; was transformed to X; = B + diZjU’, where 0 is an n;X4 matrix of
means selected to simulate the required configuration of means, d; is a constant selected to
simulate the required degree of heteroscedasticity, and U is a lower triangular matrix
satisfying the equality 2; = UU".

The data from nonnormal distributions were generated using the g-and-h distribution
suggested by Tukey (1977) and developed by Hoaglin (1985). This family of distributions is
attractive in simulation studies because those distribution shapes are determined by a small
number of parameters, a wide spectrum of distributions can be approximated, and simulated
observations can be easily generated from independent and identically distributed normal
deviates. The nonnomal data were generated by replacing the second step for generating
normally distributed variables by the following steps:

1. An n;¥4 matrix X;* was constructed by applying, X" = Z; * exp(h Zi%/2).

2. The n;X4 matrix X;° was transformed to X; = B + diX;'U’, where B, d;, and U are
defined as in the second step of the procedure for generating multivariate normal data.

Type 1 error rates were obtained under conditions where the population mean vector, B, was
the null vector. For each condition, 5000 replications were performed.
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3. Results

The distribution of Type I error rates is summarized in Table 1. The standard error of
these estimated Type I error rates is [1(1-1)/50001%, where T is the actual Type I error rate.
If T were .05, the standard error would be .0031, so that the rejection region for an
upper-tailed z test of Ho: @ = .05 is .005 at a .05 significance level. As would be expected
from the theoretical developments underlying the B and S(C) tests, using the upper-tailed z
test as a criterion, these tests do not result in Type I error rates above .05. The Welsch
tests appear to have a more liberal tendency, presumably because the critical value for the
Welsch test has no theoretical support when multisample sphericity is violated. By Bradley's
(1978) liberal criterion a test is robust if .5a £ T < 15a, where a is the nominal significance

A~

‘level. By this criterion only the Welsch tests were liberal in some conditions. However, 1

for W was larger than .075 in only two conditions. For all of the conditions in which 7 >
075, the data were short tailed and the relationship between the dispersion matrices and the
sample sizes was negative.

<Table 1> Distributions of Type I Error Rates for the Eleven Tests at a = .05

Test Min 10 25 50 75 90 Max

B 0.0108 0018 00236 00306 00408 00448  0.0516
Brr 00196 00230 00258 00306 00354 00394 00510
Bor 00192 00266 00310 00420 00492 0.0560  0.0720
w 00350 0.0440 00496 00548 00598 00646  0.0800
Wrt 00360 0.0438 00480 00534 00590 00634  0.0806
S( &) 0.0030 00106 00200 00314 00410 00508  0.0830

S( Bye 00038 00140 00242 00324 00376 00484  0.0714
S( B)pr 00034 00120 00202 00272 00332 00476  0.0678
S(C) 00158 00228 00280 00342 00396 00446  0.0500
SCgrr 00176 00264 00296 00332 00362 00402  0.04%
S(Cor 00154 00214 00240 00272 00302 00338  0.0462

Note. B=Bonferroni procedure; Brr=raw score trimmed Bonferroni; Bpr=trimmed
difference score Bonferroni; W=Welsch’s step—up procedure; Wrr=raw score trimmed

Welsch step—up procedure; S( €)=Shaffer’s Modified Sequentially Rejective Bonferroni
(MSRB) procedure using &-adjusted F test; S( &)rr=Shaffer’'s MSRB procedure using
e-adjusted F test; S( &)pr= Shaffer’s MSRB procedure using z-adjusted F test;
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S(C)=Shaffer’'s MSRB procedure using a CIGA omnibus test; S(C)rr=Shaffer's raw
score trimmed MSRB procedure using a CIGA omnibus test; S(C)pr=Shaffer’s trimmed
difference score MSRB using a CIGA omnibus test.

A 4 (Distribution) X 3 (¢) X 3 (V-C Heteroscedasticity) X 3 (ny/nz) X 2 (N) X 11 (Test)
ANOVA with repeated measures on the test factor was used to analyze the Type I error
rates. Because many of the factors that affect Type I error rates were included in the study,
the ANOVA was expected to yield a substantial number of significant effects. To compare
the relative size of the effects, the effect component of each mean square was obtained by
using (MSefteer =~ MSeror) / T, where T is the product of the numbers of levels of the factors
not involved in the effect. Defining total variance as the sum of the mean square components

plus the sum of the two error variances, the proportion of total variance, 2)2, associated with
each effect was calculated (Myers, 1979). Only effects for which 2)2 was larger than .05

were selected for interpretation. The effects which have larger than .05 2)2 were the main
effect of test (.6222), test X ni/ny interaction (.1186), test X & (.0959) and test X m/nz X 3
2; (0678). Shown in Table 2 are the effects that accounted for more than 1% of the total
variance,

<Table 2> Percent of Variance for Type I Error Rate for
Effects that Accounted for at least 1% of the variance at a = .05

Effect o’
T 0.6222
TX ny/nz 0.1186
TX ¢ 0.0959

TX m/nz X 21322 0.0678
TX nynz X ¢ 0.0158
TX D 0.0143
D 0.0132

Note. T = Test; ni/nz = Sample Size Arrangement; 2132 =
V-C Heteroscedasticity; D = Distribution; € = Sphericity.

Means for interpreting the Test X ¢€ interaction are presented in Table 3. The Bopr, W,
and Wgrr had the Type I error rates close to @ for € = 96 and .75, but W had liberal

tendency in the conditions. There was no difference between S( ) and S(C) procedures.
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Type I error rate decreases as ¢ decreases in all procedures except W, Wrr, S( é)pr, and
S(Clpr. There was small impact of violation of sphericity assumption on Type 1 error rate
for the W, S( &rr, S( &pr, S(Crr, and S(C)por procedures. Type 1 error rates are most
strongly deflated for Bonferroni procedures. The degree of deflation increases with increases
in the degree of the violation of sphericity assumption. The Wrr shows a minor degree of
inflation. ~ When ¢ = 40, the W and Wsr procedures better performed than the other
procedures.

<Table 3> Mean of Type I Error Rates as a
Function of Test and Sphericity at a = .05

Test £=.40 £=75 £=.96
B 0.021 0.036 0.038
Brr 0.026 0.033 0.034
Bor 0.029 0.047 0.049
w 0.052 0.059 0.054
Wrr 0.058 0.064 0.049
S( &) 0.026 0.033 0.037
S( &gt 0.029 0.032 0.034
S( &or 0.029 0.029 0.028
S(C) 0.028 0.034 0.039
S(Crr 0.031 0.033 0.035
S(Cor 0.030 0.027 0.026

Note. See Table 1 for abbreviations.

Means for interpreting the Test X ni/mz X Z21:%; interaction are presented in Table 4.
Results in the table indicate that when mi = n2 heterogeneity of the v-c matrices has little
effect on the Type I error rate. When 2, = 23, ny/nz appears to have relatively little effect on
Type I error rate.  When ni = n2 or 21 = 33, the best procedures appear to be W and Wxr
because they maintain Type I error rate nearest to a. When heterogeneous v-c matrices are
positively paired with unequal group sizes (5122 # 11, mi < ng), Type I error rates are
strongly deflated for S( €). The Bonferroni tests show a minor degree of deflation. The W
and Wgrr shad good control of Type I error rates. When heterogeneous v-c matrices are
negatively paired with unequal group sizes (1% # 1:1, m > n), Type I error rates are

strongly inflated for S( ). The Bonferroni and Welsch procedures exhibit moderate inflation.
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The Bpr, W, and Wgr performed better than the others in the conditions. However, Welsch
procedures appear to have a liberal tendency. If large degree of v—c matrices heterogeneity is
expected, Bor might be a best choice.

<Table 4> Mean Type 1 Error Rates as a Function of V-C Heterogeneity, Test, and Sample
Size Arrangement at a = .05

312 = 111 %12 = 122 213 = 15
Test m<nz m=nz NI>nz m<nz m=nz Mm> N2 m<nz m=nz D1>ng
B 0.033 0031 0.032 0.031 0031 0.033 0030 0.031 0.034
Brr 0.031 0030 0.032 0.030 0.029 0.033 0.029 0032 0034
Bor 0.043 0038 0.042 0.039 0.039 0046 0.037 0.042 0.049
w 0.056 0.053 0.056 0053 0.053 0.057 0.052 0054 0.060
Wrr - 0054 0051 0.055 0052 0051 0.058 0050 0.0%4 0.060
S( 8 0.031 0.034 0.031 0017 0035 0.044 0.007 0034 0.054
S( &rr 0.031 0.034 0.032 0.018 0.033 0043 0.009 0.034 0052
S( €pr 0.028 0.026 0.028 0.015 0027 0.041 0.008 0027 0.05
S(C) 0.034 0034 0034 0.034 0034 0.037 0.033 0033 0034
S(C)rr 0.033 0.033 0.034 0.033 0033 0.033 0.033 0.033 0032
S(Clor 0.028 0.026 0.028 0.027 0.026 0.029 0.026 0026 0.030

Note. See Table 1 for abbreviations.

4. Conclusion

All eleven procedures controlled Type I error rates reasonably well. Two tests emerged as
the best tests: the Welsch test on untrimmed data (W) and the Welsch test on trimmed data
(Wrr). The W and Wrr tests have Type I error rates closest to the nominal significance
level. Type I error rates for Bonferroni procedures were strongly deflated when € decreases.

Type 1 error rates for S( &) procedures were strongly deflated lwhen heterogeneous v-c
matrices and unequal group sizes are positively paired. However, when the heterogeneous v-c¢
matrices are positively paired with unbalanced group sizes, the Welsch tests had a slight
liberal tendency. Larger 7s occurred in our study because we included a short-tailed
distribution. Nevertheless, in the vast majority of conditions W and Wrr had 7 < 075
Our results indicate that, when large degree of v-c matrices heterogeneity is expected, BDT
can be better than W and WRT because of the liberal tendency of the Welsch tests.
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