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A Second Type of Centered Balanced
Systematic Sampling Method?)

Hyuk Joo Kim?2)

Abstract

Kim (1985) proposed the so-called "centered balanced systematic sampling” for
estimating the mean of a population with a linear trend. In this paper, a version of
this sampling method is proposed. It is shown that this version is as efficient as the
original method from the viewpoint of the expected mean square error criterion. It is
also shown to be quite an efficient method as compared with other existing methods.

1. Introduction

When conducting statistical surveys, we sometimes encounter a population which has «
linear trend. For example, suppose we wish to estimate the average sales of the supermarkets
in a certain city. If the supermarkets in that city are arranged in increasing or decreasing
order of the number of employees, there is expected to be a linear trend in this population.

Several researchers have proposed sampling methods for estimating the mean of such a
population. In particular, centered balanced systematic sampling (CBSS) was proposed by Kim
(1985). This sampling method turned out to be quite efficient as compared with existing
methods.

In this paper, some modification will be made with CBSS when # (the sample size) is an
odd number and # (the reciprocal of the sampling fraction) is an even number. The resulting
method will be compared with the original method and other methods under the expected

mean square error criterion based on the infinite superpopulation model introduced by Cochran
(1946).

2. CBSS1 and CBSS2

Suppose we have a population of size N=/n, the units of which are denoted by
Uy, U,,*+, Up. We wish to select a sample of size 7 from this population.
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2.1. Description of CBSS1

CBSS proposed by Kim (1985), which will be called CBSS1 from now on, is briefly
described.

If k=N/n is an odd number, CBSS1 selects the units UG- for j=1,2,-,n.
For example, if N=25, n=5 and k=5, then U, U, Uz, Ujg, Uy are selected. Thus in this
case (odd %) CBSSI is the same as centered systematic sampling (CSS) proposed by Madow
(1953).

Let us concentrate on the case when £ is an even number in the remaining part of this
section. In this case, either C’; or C’; is selected with respective probabilities 1/2. Here, the

clusters C’; and C’; are as follows :

C1={Uwaui-» : 7=1,2,, 0/ U{U s wnui-n : i=1,2,, n/2)
Co={Uirwaui-» : 7=12,, n/2Y U waywi-p : 7=1.2, -, n/2}

for n even, and

Cr={Uwaui-» : i=12,,(a+ D2} HU 11 mwi-n : 7=1,2, -, (n—1)/2)
Ce={Uirwawi-» : i=12,,(a+ D2YHU wow-» : i=1,2, -, (n—1)/2)

for »n odd.

For example, if N=24, n=6, k=4, then C’;={U,, Uy, Uy, Uss, Usg, Uy} and C'y= {U;,
Us, Un, Uy, U, U}, and if N=20, n=5, k=4, then C’y={U,, Uy, Uy, Uss, Usg} and
C'y={Us, Uy, Uy, Uy, Uyg). It is to be noted that CBSSI is obtained by combining the
ideas of CSS and balanced systematic sampling (BSS), which was proposed by Sethi (1965)
and named by Murthy (1967).

Let y, denote the value for U, (the ith unit in the population)( 7= 1,2,---,N). Also let the
value for the jth unit in C’, be denoted by »'; (i=1,2 ; j=1,2,:*, ), and let the mean
value for the units in C’; be denoted by ¥’; (i=1,2). For example, if N=20, n=>5, k=4,

then ¥ ;3=1yy, ¥ 2=y, }"1=ng'1,'/5 = (y2+y7+y10+y15+y13)/5, etc.
The population mean Y= ﬁ'\y,- /N is estimated by ¥, or ¥, according as C'ior C'y
&

is selected. That is, the estimator ¥, of ¥ by CBSSI has

o=

P(yan=9")=P(yu=79"5)=
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and mean square error

MSE(y )= % {(y'1— D2+ (y";— D).

2.2. Proposition of CBSS2

Consider the case when £ is even and # is odd. For example, suppose that N=20, »n=5
and %=4. As was seen in Section 2.1, CBSS1 selects either C = {U,, Uy, Uy, Uys, U} and
C o= (U, Uy, Uy, Uy, Ul  with respective probabilities 1/2. We notice that the sums of
the numbers assigned to the units in C’; and C ', are, respectively, 52 and 53, showing a
difference of 1. Such a difference is inevitable in the case of odd #. Suppose now that U
in C', is replaced by Uy, and instead Uy in C ', is replaced by Uj. Let us denote the
resultant clusters as C’, and C*,, that is, C'= {Uy, Uy, Uy, Uiz, Ups} and

C'y= (U, Us, Uy, Uy, Ujg) . The sums of the unit numbers in C°; and C", now
become 53 and 52, respectively, giving a difference of 1, which is the same as before.

Having this motivation in mind, we can introduce the following method, which we expect to

be efficient, on the average, in the same degree as CBSSI. Let us define two clusters c*,

and C*; as follows :
C' 1 =(C"1—{U waan-nD UU 1+ wen-1)
C"2=(C = {Ur+ waen-vD U waes-n}

We propose a sampling method such that either C*; or C", is selected with respective
probabilities 1/2 . This sampling method will henceforth be referred to as CBSSZ.

Lety"; (i=1,2 ; j=1,2,,n) and »*; (1=1,2) denote, respectively, the value for the
jth wnit in C®, and the mean value for the units in C*, . The population mean Y is
estimated by v°; or ¥', according as C*; or C'5 is selected. If we let v denote the

estimator of Y by CBSS2, then

P(Bc&=3‘1)=P(;c&=;'z)=

l\)|r—l

Yo is generally a biased estimator for 'Y and has mean square error

MSE(3 ) =5 (3" 1=+ (3", = 1)),
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3. Expected mean square error for CBSS2

In this section, the efficiency of ;’m is compared with that of —J_'cbl using the expected
mean square error criterion based on Cochran’s (1946) infinite superpopulation model.

We regard the finite population as a sample from an infinite superpopulation. First, as a
general case, we set up the model as

yvi=u;+te; (i=1,2,-,N), (3.1

where u, is a function of 7 and the random error ¢ has the properties E(e)=0, E( e?)

=¢’ and FE(e;e)=0 (i#+j). The operator E denotes the expectation over the infinite
superpopulation,
From now on, with regard to # and e also we will use the same notation as adopted for

3. That is, u*; denotes the mean u value for the units in ct i e'i, denotes the random
error for the jth unit in C*, and so on.
The following theorem is very important in evaluating the efficiency of CBSSZ.

Theorem. Assuming the model (3.1), the expected mean square error of }c& for k even

and 7 odd is

EMSE(Tvm)=% {(72'1—2)2+(Z'2—Z)2}+02(%—LN). (32)

Prodf We know that
MSE(3 ) =5 (3" 1= D*+ ("= DY), (33)

and by (3.1) we obtain
Y=pute. (3.4)

On the other hand, from (3.1) it can be written that
yi= i+ ey (i=1,2; j=1,2,,n), (35)

from which we obtain

»

y'=pu'+ e (i=1,2). (3.6)

Substituting (3.4) and (3.6) into (3.3) and taking expectation, we have
EMSEGyap) =% EL((i" =) + (21 = 2P+ (5" =) + (22— )]
D Yt Y —s 2 —s T2 —x T2
=5[(e" 1 —w)*+E{(e’ —e)}+ (" ys— )+ E{(e” ,— e)°}]

2
=% {(?1—72)2+(Z‘2—Z)2}+% gE{(Z*i—E)Z}. (3.7
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We further have, for i=1,2,

E{(e";— &) =E{(e" )} —2E((e” )(e)} + E{(e)} (38)
and
= 2 _ L * 2
E((e" )" =E(L 2
1 * )2 Y&
R PO PHE CD)
= L[ SR DY +2 RE((E )X )]
n2 = v < v v
=#(n02+0) (by the assumptions of the model)
_0
-, (39)
and similarly
E(@" )@ =E(@ =% @.10)
Substitution of (3.9) and (3.10) into (3.8) gives
— o 2l 1 e
E{(e" ;=) }_02( L N) (i=1,2), (3.11)
and (32) is immediately obtained from (3.7) and (3.11). This completes the proof. [ |

Now, let us consider the case of g;=a+ b, where a and b are constants with #50. In
other words, the assumed model is

yi=a+bite (=1,2,-,N). (3.12)

This is the case of a population with a linear trend.
In this case, we can obtain the following formulas (See Appendix for derivation) :

r=a+ (“%)(N+l) (3.13)
Z=at (LHvrD+ L (3.14)
1 2 2n ‘
ut =a+(£)(N+1)——b— (3.15)
2 2 on .

Substituting these formulas into (3.2), we obtain

_ 2
EMSE(3a) =Ly + Py =) (k:even, n: odd. (3.16)
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(3.16) now needs to be compared with the expected mean square error of ¥ by CBSSI.
It was obtained in Kim (1985) that

EMSE(ycm)—' " +02(1 1-1\7) (% :even, n: odd), (3.17)

which is equal to (3.16). Consequently, we can state that ;cbl and ¥ are equally efficient
from the viewpoint of the expected mean square error criterion.

4. Comparison with other methods

In this section, the efficiency of CBSS2 is compared with that of other methods. Let us
consider simple random sampling (SRS), ordinary systematic sampling (0SS), balanced
systematic sampling (BSS), centered systematic sampling (CSS), modified systematic sampling
(MSS) proposed by Singh et al. (1968), and centered modified systematic sampling (CMSS)
proposed by Kim (1985). Discussions on comparisons of the performances of BSS, CSS, MSS
and OSS are also given in Bellhouse and Rao (1975).

For a population characterized by the model (3.12), the following were obtained in Kim
(1985):

EMSE(3 ) = (L )N+ D (k- D + 2L - L) 4D
EMSE(3.) = (L) (k+ (k- D+ A+ - L) 42
EMSE 31u) = EMSE( os) = ( 1;;2 YE+DR-1D+ AL — L) () 4y
EMSE(3an) = 4= + A(L — L) (& even (44
EMSE 5o =27+ 0 (L =) (& + even, n : 0dd) 45)

Here }m, y . Y baty }m, },,m-, and ;m denote the sample mean, which is used as the
estimator of the population mean, obtained from SRS, 0SS, BSS, CSS, MSS, and CMSS,
respectively. ‘

On the basis of formulas (3.16), (3.17), and (4.1) through (45), we can arrange the methods
under consideration according to the magnitude of the expected mean square error as follows.
For simplicity’s sake, EMSE(y.) is denoted as ” cb " EMSE(y,) as " cen ", and so
on. Thus, for example, " cen > cb2” means that CBSS2 is more efficient than CSS. We only

consider the case of #=3,5,7,+ since the case of #=1 does not have practical
meaning.
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MIf =2 and 2=23,5,7, -+, then
ran > sy= cen ) bal= mod = cm = cbl = cbl.

@) If k=4,6,8,-, n=3,5,7,-, and n<vV (k¥*—1)/3, then
rand sy > bal = mod = cen > cm = chl = cb2.
3) If £=4,6,8,, n=3,5,7,-, and n> V (¥#—1)/3, then
van > sv> cen Y bal = mod > cm = cbl = cb2.

As we see from the above result, CBSS2, together with CBSS1 and CMSS, is quite efficient
as compared with other methods in each case.

Example. The following data, adopted from Cochran (1977, p.211), are for a small artificial
population that exhibits a fairly steady rising trend. We have N=40, k=8, »=5.

o 1 1 2 &5 4 7 7

8 6 6 8 9 10 13 12

15 16 16 17 18 19 20 20

24 23 25 28 29 27 2 30

31 31 33 32 3 37 38 38

The mean and the variance of this population are Y =18.175 and S?=136.251, respectively.
The possible samples and MSEs of the estimators of Y by various sampling methods are
given in Table 1. For example, MSE(y o) is calculated as follows :

MSE(ya) =% (37— 71+ (3%~ 1))

1 ((18.4-18.175) + (18.2-18.175))
0.

026

As we see in Table 1, CBSS2, together with CMSS, is the most efficient for this population
among the eight methods considered.

Remark. As stated in Cochran (1977, p.213), the results proved in Sections 3 and 4 do not
apply to any single finite population (i.e., to any specific set of values y;,¥2,-,¥5) but to

the average of all finite populations that can be drawn from the infinite superpopulation. It is
to be understood from this viewpoint that CBSS] is less efficient than CBSS2 and CMSS in

the above example.
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Table 1. Possible samples and MSEs of the estimators of Y by various sampling methods
(for population in Example)

S;I:g;g Possible samples MSE
SRS (42) kinds 23.844
0SS {0, 8, 15, 24, 31} {1, 6, 16, 23, 31} {1, 6, 16, 25, 33} {2, 8, 17, 28, 32} 4834

{59, 18, 29, 35} {4, 10, 19, 27, 37} {7, 13, 20, 26, 38} {7, 12, 20, 30, 38)
BSS {0, 12, 15, 30, 31} {1, 13, 16, 26, 31} {1, 10, 16, 27, 33} {2, 9, 17, 29, 32) 0,494

{5, 8, 18, 28, 35} {4, 6, 19, 25, 37} {7, 6, 20, 23, 38} (7, 8, 20, 24, 38}
CSS {2, 8, 17, 28, 32} {5, 9, 18, 29, 35} 0.826
{0, 8, 15, 30, 38} {1, 6, 16, 26, 38} {1, 6, 16, 27, 37} {2, 8, 17, 29, 35)

MSS 5,9, 18, 28, 32} {4, 10, 19, 25, 33} {7, 13, 20, 23, 31} {7, 12, 20, 24, 31} 024
CMSS {2, 8 17, 29, 35} {5, 9, 18, 28, 32} 0.026
CBSS1 (2,9 17, 29, 32} {5, 8 18, 28, 35} 0.266
CBSS2 {2, 9, 17, 29, 35} {5, 8, 18, 28, 32} 0.026

5. Concluding remarks

Several sampling methods have been introduced so far in order to estimate the mean of a
population which has a linear trend. Among them, CBSS] proposed by Kim (1985) was seen
to be a desirable method for such a type of population.'

In this paper, for the case of % even and # odd, a second type of CBSS was proposed and
named CBSS2. It can be regarded as a kind of controlled selection method which is derived
from balanced systematic sampling. It restricts the number of possible samples to two, among
the % possible samples that can be drawn by BSS. It was shown that CBSS2 gives an
estimator with the expected mean square error which is equal to that resulting from CBSSI.
It was also shown that CBSS2, together with CBSSI, is quite efficient as compared with
other sampling methods. Like other types of systematic sampling, CBSS2 can be easily used
in real situations because the sampling procedure is simple.
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Appendix :

3

1

3 (a+ bi)

(Na-i—bgli)
=a+(2)(v+D)

Zzp

(1) =

2k =z

Derivation of formulas (3.13) through (3.15)

where we used g:l i=N(N+1)/2.

@ u*y =.% P uy

1 (ni)/z (ng /2
= { = Hwui-3 + # K1y ai-n T #1+(k/2)(2n—1)}

n
— L1 e iboui-a)+ O (o WL+ )W~ 1)} +a+ b1+ (£ )2n— D)

(n2)/2
By using n]gl j=(n+1)(n—1)/8, we obtain formula (3.14) by straightforward

algebra.

(3) Formula (3.15) is derived by quite a similar method to (3.14).



