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Simultaneous Unit Roots Tests for Both Regular
and Seasonal Unit Rootsl)

Sinsup Cho?), Jeong Hyeong Lee?), Young Jin Park®
and Heon Jin Park®

Abstract

We obtain the simultaneous unit roots test statistics for both regular and seasonal
unit roots in a time series with possible seasonal deterministic trends. The limiting
distributions of the proposed test statistics are derived and empirical percentiles of the
test statistics are tabulated for some seasonal periods. The power and size of the test
statistics are examined for finite samples through a Monte Carlo simulation and
compared with those of the Lagrange multiplier test.

1. Introduction

Let us consider the time series model of the following form:
(1-pB(1—pB)Y, =&, (LD
where Y_g4, ..., Y, are initial conditions and the &; are independent random variables with
mean O and variance ¢°. When o= ps=1, model (1.1) represents a nonstationary seasonal

model with both a regular and a seasonal unit roots. For testing the null hypothesis,
Hy 0= pz=1, Li (1991) suggested a test based on the LM principle and Hasza and Fuller

(1982) considered the F-type test using the transformed regression model:
V=&Y, 1+ &Y ot Y a1 T & (1.2)
It is noted that (1.1) is the special case of (1.2) with &, = p, & =0, and &3 =— ppoq.

Hence the null hypothesis of both a regular and a seasonal unit roots for model (1.2) is
(&, & &)=(1,1, —1). For convenience, model (1.2) is reparameterized in Hasza and Fuller

1) The present study was supported (in part) by the Basic Science Research Institute Program, Ministry
of Education, 1995 Project No. 1418.

2) Professor, Department of Statistics, Seoul National University, Seoul, 151-742, Korea.

3) The Research Institute for Basic Sciences, Seoul National University, Seoul, 151-742, Korea.

4) Post-Doc., Department of Statistics, North Carolina State University, Raleigh, U.S.A.

5) Assistant Professor, Department of Statistics, Inha University, Incheon, 402-751, Korea.

-663-



664 Sinsup Cho, Jeong Hyeong Lee, Young Jin Park and Heon Jin Park

(1982) as
Yi=$1 Y1+ (Y1~ Yig)+03(Y o y— Yy ) ter. (1.3
For model (1.3) the null hypothesis is (¢;. ¢;, ¢3)=1(1,0, 1).

In this paper we consider the seasonal model with seasonal deterministic trends
Y, = Zl(aj +B8ir)8p+ EY 1+ EY s+ &Y,y 1ty (1.4)

where 7=[(¢#—1)/d +1] with [x] denoting the largest integer no larger than x and dj; are

seasonal indicator variables such that

1if /=(—1)(modd)+1
8 pt= [

0 otherwise.

In the following sections we obtain the test statistics for simultaneous unit roots test for
model (1.4) and derive their limiting distributions. The performance of the proposed test
statistics will be compared with that of the test statistic based on the Lagrange multiplier
principle, Park and Cho (1995). For this purpose we briefly outline the LM test. Consider the
following seasonal model with possible seasonal deterministic trends

(1-0B)(1—p BY)Y,= }2\( a;+ ;08 ;i + &, (1.5)
This model is also the special case of model (14) with & =p, & =p,; and &= pp,.
Park and Cho (1995) suggested the LM test statistic which does not depend on the nuisance
parameters a;’s and B;'s, using the restricted maximum likelihood estimators @;’s and B;

’s obtained under the null hypothesis (p, pg)=(1,1). LM test is based on the approximate
log-likelihood function with ,21 &% in (15).

Let the parameter sets for model (1.5) be AT= (ay, -, aq, By -, Ba, p, 0g) and

T - - _
A =(a, -, @5, B, -, Bz,1,1). Then the LM test statistic is given by P’ o 'p
where P=P(/) and Q= Q(ZA) are the score vector and the Hessian matrix obtained

subject to 71, respectively.
Following Hasza and Fuller (1982), model (1.4) can be reparameterized as

Y, = ;21(‘1" +B8it)8ut+ Y1+ (V1= Yy )+ @3(Yy— Y, g 1)+ &. (16)

In the followings we use model (1.6) instead of (1.4) for convenience.

In Section 2, we obtain the test statistics for simultaneous unit roots test of model (1.6).
The limiting distributions are obtained in Section 3. To compare the performances of the
proposed test statistics with the LM test statistic of Park and Cho (1995) we tabulate the
empirical percentiles and powers in Section 4. Finally Section 5 contains an example.
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2. Test Statistics and Preliminaries

To obtain the test statistic we consider regression type estimators and derive the limiting
distributions under the following null hypotheses

H(n: (¢1: ¢2, ¢3)=(1, 0, 1), a; = ﬂ;= 0, for j=1, eey d. 2.1

Ho: (41, 62, ¢3)=1(1,0,1) (2.2)
To test the presence of both regular and seasonal unit roots, Li (1991) considered the null
hypothesis Hj where the nuisance parameters are zeros. Unlike Li (1991), we also consider

Hy, as Hasza and Fuller (1979) did when d=1. We first concentrate on the case of Hy

based on F-type statistic.
Let the parameter sets in (1.6) be

T
I/ =(a11 ey Xy, Bl’ vy /3dv ¢1s ¢2: ¢3)'
and the design matrix be

w"T=( alt: tty 6dl‘v raltv LAY tadh Yt—lth—l:Nt—d);
where we define N;=Y,—Y,.; and M;=Y,—Y,_; as in Hasza and Fuller (1982). Then

model (1.6) can be written as Y,= ®7 I+ &, and the OLS estimator of IT is given by

=% wed IR A

We have under the null hypothesis
(TI- = H, ' h,,

where H,= Z\ 7. P! and h,= Zl D,

Define the test statistic @ , using the same notation as in Hasza and Fuller (1982) where
a corresponds to one of Hy and Hy, b stands for n-(the number of parameters in IT)

and ¢ stands for the number of parameters appeared in the null hypotheses Hy and Hpy.
Then

03 5= {(2d+3) &) ‘AT H, ' h,, (2.3)
where o =(n—2d—3) ! tg‘( Y,— ﬁTF,)z. Details of (2.3) can be obtained in Dickey

and Fuller (1981).
Since we compare the performance of the test for Hy with that of the LM test by Park

and Cho (1995), we also briefly discuss how the test statistic for Hp, is obtained. For this

purpose we partition the matrix H, ! into 4 block matrices.
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G(ll) G(12)

H'=
" T @

where GW is a 2dx2d matrix, G"? is a 2dx3 matrix, and G® is a 3x3 matrix. Also

we partition /I\I as follows:

~MT
7=| &
n
7 o . ~ @ i
where IT contains wupper 2d rows and I7 contains lower 3 rows. Let
-~ (2)
h,P=T"~(1,0,D)7. Then, the test statistic for Hy, is

0% n-24-3=(3 AN h,.(Z)TGm) h, @ 2.4

The limiting distributions of @-statistics are obtained following Hasza and Fuller
(1979,1982) and are expressed as the functional forms of Brownian motions using Chan and
Wei (1988).

Assume that Y, satisfy

Yt= Y;_l + Yt—d_ Yt—d—1+$t' (2.5)
Then N;=Y,—Y,; and M,=Y,—Y,_; can be expressed as follows:
Nt=Nt—d+€t= g:st—ﬂv M1=Mt—1 +Et= ;15‘;. (26)

We need the following asymptotic behavior of sample moments of functions of N,, M, and
Y, to obtain the limiting distributions of the proposed test statistics (2.3) and (2.4). Details

are given in the Appendix 2 of Park and Cho (1995). The followings are obtained, where
m=/[n/d].

n %2 ZﬁN(”‘D‘”" L, d—a/zaf W{(»dr

n BN Lane B omw-re
n? ZINL’_,, L, d_zo‘z'}gl f W idr

n "5 glkN(k_D,H,- L, d”‘r’/zafrW}(r)dr
n 3 ZIM(k—I):Hj L, g-2 ,Zl Ll WA »dr

i, pl
n~5" glkM(k—l)d-H L, d—S/zag‘L rW{ndr
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n B M,e B AMDI-D/2

W R JZLIW(r)Zdr

nPRM, N, D a7 glglfw;.(r) Wi Ddr

n S Y e d‘5fza§:1£1£rz W ) drdr,

n B RY Gopars d'”%?QlLlrzj;'zm(rl)drldrz

n Ve Loa @B 3 [ [ wranawin)

n! r’i v, L d““azf g:l{ g‘fvz(rl)drl}zdrz

n PRV N B d Jgf{ ZILrZVT/}(rl)dn)VW(rz)drz

iy Mo L d—zozg“f ');{ervv,(rl)drl}vvj(rz)dn.

3. Limiting Distributions

To obtain the limiting distributions of (2.3) and (2.4), we premultiply H, and A, by the

scaling matrix D, = diag(D,, Dy,) where D,=diag(n B R P St LR -2y

—2’ n 41’ n —1).

DAL Te)= (D1 3 Frued n 2B Y ien n DM e n T BN ge) B

where

and D,,=diag(n

-1/2 =1/2
D Zl Tye) =(n ! Zle(k—l)d+1- s B f le kds
- -3/2
n = glks (k~Dd+15 *» N / glkﬁ kd)-

Also we have
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D 3. ¥ ¥1)D, = (32

where I is a dXxd identity matrix,
-1 -2 -2 2
A,=n glu, B,=n glkl, Go=n" 2 FL

—5/2 -3/2 —3/2
n /le(k—ndH n /glM(k—l)d+1 n /glN(k—l)d+1

C,= :
y 52 gl Y n 32 gled n 32 glde
n =12 glkY(,,“l)dﬂ n =52 glkM(k—l):Hl T glkN(k~l)d+1
E,= : : :
—c glk Y ia 5 52 glkMkd p 52 glkad

and

n RV PRV M, n R Y N

F,= n"? §1M2:—1 n~? tglMt—th«d

n ?—2 ZlNzt—d

The first block of matrix (3.2) represents D ,( :21 ?,.97)D,,.

Theorem 1 Let Y, satisfy (25), and N, and M, be defined by (2.6). Then we have

D,( g} Te) L p and D,,(glyr,yr,’)p,, L g (3.3)

D e L v and DL(Z #FD, b R 34

where
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BT=(r".d P 3 g‘frzf’m(n)dndvv,-(rle(%z—i,d“ 2{‘@2)—21)

and

1 1
P T=( d W), .., d WKL), d"mj; rWi(Dar, ...,d"mL r Wi Vdr)

and the components of H consist of terms which are the limiting distributions of
A, B, C, E,,F, and G,, and the components of R consist of terms which are the

limiting distributions of A,, B, and G,.

Proof : The results can be obtained by the application of the asymptotic behaviour of the
sample moments given in Section 3.

We obtain the following theorem for @ ; under Hy and Hpp.

Theorem 2 Let the assumptions of Theorem 1 hold. Then

2d+3 L 1 Tyr1
() 015 %03 — —_—(2d+3)ozhH—h
(@) Ohars Lo S TH - R),

where h and H are defined by (33) and R,= y Ry since r and R are defined by
(3.4). The explicit form of R; is given by

Ri=4 5 (WD +3( [ W(Adr)—3 WD [ W(Adr).

The proof of Theorem 2 is obtained using Theorem 1 and the results of Chan and Wei
(1988). It is noted that when d=1, (1) and (2) are equivalent to (v) and (iv) of Corollary 3.1
of Hasza and Fuller (1979), respectively.

Since the test statistics depend on the null hypotheses, we need a priori information about
nuisance parameters to choose a proper statistic. Otherwise, it will be safe to use the test
statistic (2) of Theorem 2, which does not depend on the presence of nuisance parameters.

Hasza and Fuller (1982) extended model (1.3) by including the lagged variables
(1—B)Y(1—B?)Y,_, and showed that the percentage points of the test statistics for model
(1.3) are still applicable for the extended model. Similarly we can extend model (1.6) by

including the lagged variables (1—B)(1—B®)Y,_; in (35).

Yt = gl(a’j + Bif)3i1+ ¢1Yt—1 + ¢2( Yt—l“ Yt—-d—l) + ¢3( Yt—d_ Yt—d-l)
(3.5)
+ glak(l—B)(l—Bd)Y,_,,+ ..
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It is not difficult to show that the asymptotic distributions of the test statistics for (2.1) and
(2.2) in model (3.5) are equivalent to those of the asymptotic distributions of Theorem 2.

4. Simulation Results

Empirical percentiles of the test statistics in (1)-(2) of Theorem 2 have been obtained for
d=2,4,12 and m=10, 15, 20, 25, 50, 100, 200 in Tables 1 and 2. These results have been
obtained from simulation, where the &, are generated by the RNNOA subroutine of IMSL and
are based on 30,000 replications. The initial conditions are set to zeros as in Dickey and Fuller
(1979). The empirical percentiles were smoothed by regression on exp(—x).

To examine the power of the proposed test statistics under the various alternatives we
perform the simulation study. For the simulation we consider the following model

Yt= glb)’ré\l‘t"‘Nt (4.1)

(1—pBX1—p4B*)N,=¢,.
By applying the filter (1—pB)(1—p,B*) to Y, in (4.1), we can see that the model (4.1) can

be represented in the form of (1.6).
For model (1.6) the powers of the tests for null hypotheses Hy and Hj, are summarized

in Tables 3-5 for all combinations of © and 0,=0.8, 0.9, 0.95 098 099, 0995 1.0. Here
=1 and p4=1 are considered in order to study the size of the test for finite samples.
For the values of nuisance parameters, power is evaluated at 8;=1, 8,=3,8;=4 and
B4=2 . Samples of size n=100 are generated using the RNNOA subroutine of IMSL to

generate pseudo random samples of the &; from a standard normal distribution. Based on
10,000 replications, the power of the test is obtained at the significance level 0.05. We include
the result of Park and Cho(1995) in Table 5 so that the performance of the proposed test
statistic (2) in Theorem 2 can be compared to that of the LM test statistic.

In Tables 3 and 5 we observe that the power decreases as the value of p; gets smaller
when p is less than or equal to 0.95. But when p is larger than 0.95 the tendency is
reversed, i.e.,, the power decreases as the value of p4 decreases.

For Table 4, the power tends to increase as both o and o4 mové away from one. But, for
Table 3, the power tends to increase when one of p and p, gets close to one and another
moves away from one. The result may be due to a relatively large initial value. For a large
initial values, the model acts like the model with non-zero mean. But when o or o, is one

or close to one, the mean effect is diminished and the effect of the large initial value may be
reduced.



Table 1 Percentiles of ¢%f;§2d_3 Statistic for the Seasonal Trends Model

Simultaneous Unit Roots Tests for Both Regular and Seasonal Unit Roots

Probability of a Smaller Value

]
d | n=md 0.01 0.025 0.05 0.10 0.50 0.90 0.95 0.975 0.99
2 20 | 09951 | 1.1426 | 12943 | 15197 | 27043 | 4.8651 | 56520 | 6.4423 | 7.4691
2 30 | 10791 | 12231 | 13671 | 15574 | 24943 | 43629 | 50940 | 58414 | 6.8169
2 40 | 1.1074 | 12471 | 13860 | 15643 | 24146 | 4.0320 | 47040 | 54009 | 6.3197
2 50 | 1.1177 | 12540 | 1.3911 | 15660 | 23846 | 3.8151 | 44306 | 50777 | 59409
2 100 | 1.1220 | 1.2574 | 1.3929 | 15660 | 23675 | 34509 | 3.9009 | 4.3766 | 5.0366
2 200 | 1.1220 | 12574 | 13929 | 15660 | 23657 | 3.4003 | 3.7963 | 4.1991 | 4.7473
2 400 | 1.1220 | 12574 | 13929 | 15660 | 23657 | 34003 | 3.7937 | 4.1846 | 4.7229
4 40 | 11723 | 13139 | 14454 | 16123 | 24592 | 37846 | 42715 | 4.7269 | 52746
4 60 | 12008 | 1.3246 | 14392 | 15854 | 22815 | 33892 | 3.8192 | 42300 | 4.7354
4 80 | 12054 | 13262 | 14385 | 15823 | 2.1908 | 31739 | 35500 4 39169 | 4.3739
4 100 | 12062 | 13262 | 14385 | 15815 | 2194 | 3.0554 | 33892 | 37185 | 41315
4 200 | 1.2069 | 13262 | 14385 | 15815 | 21831 | 29200 | 3.1708 | 34123 | 3.7062
4 400 | 12069 | 13262 | 14385 | 15815 | 2.1831 | 29131 | 3.1539 | 33785 | 3.6408
4 800 | 1.2060 | 13262 | 14385 | 15815 | 2.1831 | 29131 | 3.1539 | 33785 | 3.6392
12 120 | 15923 | 17115 | 18169 | 19531 | 25139 | 3.2539 | 35046 | 3.7377 | 4.0031
12 180 | 15539 | 16539 | 1.7469 | 1.8608 | 23323 | 2.9508 | 3.1615 | 3.3600 | 3.5908
12 240 | 15477 | 16415 | 1.7308 | 1.8385 | 22685 | 2.8139 | 29954 | 3.1669 | 3.3715
12 300 | 15462 | 16392 | 1.7277 | 1.8323 | 22454 | 2.7523 | 29154 | 3.0685  3.2554
12 600 | 15462 | 16385 | 1.7262 | 1.8308 | 22331 | 27023 | 2.8423 | 29700 | 3.1300
12 1200 | 15462 | 16385 | 17262 | 1.8308 | 22331 | 27008 | 2.8400 | 29662 | 3.1246
12 2400 | 15462 | 16385 | 1.7262 | 1.8308 | 22331 | 2.7008 | 2.8400 | 29662 | 3.1246

671
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Table 2 Percentiles of ¢32',,_2,1._3 Statistic for the Seasonal Trends Model

Probability of a Smaller Value

d | n=md 0.01 0.025 0.05 0.10 0.50 0.90 0.95 0.975 0.99

20 | 06553 | 09133 | 1.1687 | 15100 | 32680 | 58993 | 69513 | 9.1480 | 10.767
30 | 0.7980 | 1.0840 | 13607 | 1.7160 | 3.3007 | 58653 | 6.8927 | 8.1960 9.711
40 | 0.8820 | 1.1753 | 14553 | 1.8073 | 33040 | 58313 | 6.8340 | 7.5787 8.968
09313 | 12240 { 15027 | 1.8473 | 3.3040 | 57980 | 6.7767 | 7.1780 8.444
100 | 09960 | 1.2780 | 1.5473 | 1.8793 | 33040 | 56373 | 65053 | 6.5247 7413
200 | 1.0007 | 1.2807 | 15487 | 1.8800 | 33040 | 53433 | 6.0280 | 6.4413 7.204
400 | 1.0007 | 1.2807 | 15487 | 1.8800 | 33040 | 4.8487 | 5.2913 | 6.4407 7.197

BN NN NN
g

40 | 1.3987 | 1.7640 | 25433 | 26347 | 4.8860 | 82960 | 9.5620 | 10.771 | 12.361

4

4 60 | 16507 | 2.0447 | 25433 | 29267 | 49553 | 7.6813 | 87107 9.723 | 11.085
4 80 | 1.7827 | 2.1813 | 25433 | 3.0413 | 49640 | 7.4587 | 8.3440 9.221 | 10405
4 100 | 1.8520 | 22473 | 25433 | 3.0867 | 49647 | 7.3773 | 8.1860 8.981 | 10.043
4 200 | 19253 | 23080 | 25433 | 31153 | 49653 | 7.3320 | 8.0687 8.765 9.649
4 400 | 1.9287 | 23100 | 25433 | 31160 | 49653 | 7.3313 | 8.0667 8.760 9.631
4 800 | 1.9287 | 23100 | 25433 | 3.1160 | 49653 | 7.3313 | 8.0667 8.760 9.631
12 120 | 6114 | 68533 | 75193 | 83313 | 11.549 | 15920 | 17432 | 18981 | 20.803
12 180 | 6.114 | 68533 | 75193 | 83313 | 11549 | 15377 | 16641 | 17.866 | 19.307
12 240 | 6114 | 68533 | 75193 | 83313 | 11.549 | 15253 | 16439 | 17527 | 18.778
12 300 | 6114 | 68533 | 75193 | 83313 | 11.549 | 15220 | 16387 | 17425 | 18591
12 600 | 6114 | 68533 | 75193 | 83313 | 11549 | 15221 | 16369 | 17.380 | 18.489

12 1200 | 6114 | 68533 | 75193 | 83203 | 11.549 | 15221 | 16369 | 17.380 | 18.488
12 2400 | 6.114 | 68533 | 75193 | 83313 | 11.549 | 15221 | 16369 | 17.380 | 18.488
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Table 3 Empirical Power of Size 0.05 Test for @3%2,; 3

o\ Pg 0.8 09 09 098 099 09% 1.0
0.8 8633 9656 9960 1.0 1.0 1.0 1.0
0.9 1627 1731 3659 .6250 7039 .7492 7890
0.95 3008 1486 0942 1262 1494 1622 1712
0.98 2854 1277 0663 .0613 .0536 .0616 .0539
0.99 2132 1179 0745 .0584 0535 .05643 0519
0.995 1648 1190 0769 .0634 0569 .0659 .0500
1.0 1321 .1173 0851 .0603 0528 .0520 .0486

Table 4 Empirical Power of Size 0.05 Test for ¢32,,,-2d_ 3

P\ Pg 0.8 09 09 098 099 09% 10
0.8 6969 6046 5780 4622 3442 2671 .1860
09 1848 1649 1530 1567 1404 1324 1232
0.9 2266 1582 .1071 0810 .0697 0721 .0625
0.98 1926 1057 0655 .0603 0515 .0558 .0502
0.99 1338 0794 0538 .0502 .0533 .0537 .0430
0.99% 0984 0624 0568 .0535 .0503 .0540 .0468
1.0 0727 0597 0536 0513 .0499 .0513 .0503

Table 5 Empirical Power of Size 0.05 Test for LM

o\ Pg 038 09 09 098 099 09% 10
0.8 4641 5691 6834 .7838 8267 .8397 .8666
0.9 3013 3618 4272 4961 5401 5574 .5841
0.9 2203 2175 23714 2605 2725 2795 .2945
0.98 1755 1515 1224 1016 0928 .0892 .0891
0.99 1676 1158 0782 .0619 0566 .0545 .0575
0.995 1614 1005 0679 0518 .0479 0473 .0452
1.0 1671 0875 0523 0506 0505 .0425 .0448




674 Sinsup Cho, Jeong Hyeong Lee, Young Jin Park and Heon Jin Park

5. Numerical Example

The proposed test of multiple unit roots is applied to the quarterly Korean GNP series over
the period 1970 through 1991, whose plot showes a seasonal pattern with period 4, Figure 1.
The plot shows the series may contain both the stochastic and deterministic trends. Hence

for this quarterly data we fit model (35) with p=4 and include at least four lags. The

values of the test statistics @, and @, together with the estimation results for ¢;'s, t?,-’s,
Bi's and 6y's for i=1,2,3, j=1,2,3,4 and k=1,2,3,4 are summarized in Table 6.
From Table 6 we observe that Hp is rejected while Hpy, is not rejected. The acceptance

of Hpy together with the significant @;’s imply that the rejection of Hy may be due to
nonzero nuisance parameters. Since the seasonal deterministic trends are not significant we
consider the reduced model without these terms. Test statistics for the reduced model can be
easily obtained following Corollary 4.1 of Hasza and Fuller (1982). The test statistics for the
reduced model in Table 7 are denoted by R¢1d+3 and R®; for convenience and the critical
values are read from Table 5.1 of Hasza and Fuller (1982). From Table 7 we observe that the
null hypothesis of simultaneous unit roots together with zero seasonal deterministic levels is
again rejected while Hj is not rejected. The estimation results lead us to conclude that the
Korean GNP series contains both the regular and seasonal unit roots together with the
nonzero deterministic seasonal levels. As a conclusion if we do not have a priori information
about the existence of nuisance parameters and our interest is only to determine whether the
series contains simultaneous unit roots it is safe to use the test statistic (2) of Theorem 2.

Table 6 Estimation results of the Korean GNP data in model (3.5)}

s 0978 ~0.208 0.427
‘ (0.056) (0.149) (0.122)
N -1770.013 863074 - 218337 2666.989
@i (539.288) (459.829)  (454.918) (531.461)
7 -64.248 75.333 84548 64.713
d (83.960) (71.482) (75.878) (82.236)
7 ~0.025 0.092 0.124 ~0.025
* 0.177) (0.116) (0116) . (0.11D)
O; |02 3=4.404 03=6.202
c—-value 4.119 8.281

Standard errors of estimators are in parentheses and ‘c-value’ means the critical
value at significance level 0.05.
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Table 7 Estimation results of the Korean GNP data
without the seasonal deterministictrends

5 1.000 -0.302 0.649
! (0.014) (0.121) (0.082)

~ -1838.395 1041.139 680,262 2133.783
o (544.692) (310480)  (299.738)  (438.273)
. 0.017 0.145 0.163 ~0.100
k (0.111) (0.110) (0.109) (0.103)
®; | ROM’=5.259 R0}=5.671
c-value 393 8.96

Standard errors of estimators are in parentheses and ‘c-value’ means the critical
value at significance level 0.05.

GNP (billion won)

10000

1670 1880 1880

Year

Figure 1 Time Series Plot of the Korean G.N.P. Series
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