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Robustness for Omnibus Tests using Trimmed Means
under Violated Assumptions

Hyunchul Kim!

Abstract

Univariate F test is based on the multisample sphericity assumption. Robustness
for tests of a main effect of the within-subjects factor was investigated when the
assumptions of the omnibus F tests are violated in a split-plot design with one
between-subjects factor using untrimmed data and trimmed data. The results
indicate that when sample sizes are unbalanced and dispersion matrices are
heterogeneous, the CIGA and the CIGAr tests better control Type I error rates than

do the Fr test and the &r test.

1. Introduction

Huynh and Feldt (1970) investigated conditions on the variance-covariance (v-c) matrix
required to test the hypothesis of no within-subjects effect. They showed that necessary and
sufficient conditions on the v-c matrix for level j of between-subjects factor (;) for the valid
F tests are (a) homogeneity of the v—c matrices for a suitable set of orthonormalized variables
at all levels of the between-subjects factor, and (b) sphericity of the common v-c matrix.
These conditions have been referred to as multisample sphericity. A v-c¢ matrix is spherical
if the variances for all possible difference scores are equal. With the homogeneity of the v-c
matrices assumption, the variation of the interaction of the subject and the within—subject
factors is homogeneous for the groups. This allows pooling over groups to calculate the sum
of squares for the interaction of the within-subjects factor and subjects within groups (Brogan
and Kutner, 1980).

Repeated observations seldom satisfy the sphericity assumption (Rogan, Keselman, and
Mendoza, 1979). For example, when the within-subjects factor is occasion, adjacent
measurements are usually more highly correlated than non-adjacent measurements in split plot
and repeated measurements designs (Huynh and Feldt, 1970; Rogan, Keselman, and Mendoza,
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1979). Theory in Box (1954) can be used to show that under violations of sphericity the F
test of the within-subjects main effect is distributed approximately as F with £(K-1) and ¢
(N-])(K-1) degrees of freedom in a split plot design. Greenhouse and Geisser (1959)
suggested ¢, and Huynh and Feldt (1976) suggested & as the estimates of €. Lecoutre

(1991) corrected a minor error in the formula for € Huynh (1978) extended the &- and &
-adjusted tests to the General Approximation (GA) test and the Improved General
Approximation (IGA) test to take the heteroscedasticity of the v-c matrices into account.
Algina (1994) developed the corrected Improved General Approximation (CIGA) test based on
Lecoutre’s (1991) results.

Algina and Oshima (1995) tested the hypothesis of within-subjects main effect by using
unweighted means. They considered normal distribution and lognormal distribution. Algina

and Oshima (1995) reported that the Z‘—adjusted test provides adequate control of the Type 1
error rate as IGA and CIGA. Kim (1997) investigated Type I error rates and power in a split
plot design with one between— and one within-subjects factor when the assumptions of the

tests are violated for three omnibus tests: the F test, the E—adjusbed F test, and the CIGA.
Conditions with normal distribution, and nonnormal distributions with symmetric but with
different kurtosis were considered. The long-tailed distributions were g=0,h=.109 and g
= 0, h = .35, and short-tailed distribution was g = 0 and h = -244. In contrast to Algina
and Oshima (1995), Kim (1997) reported that the ¢-adjusted test does not control Type I
error rates. Kim (1997) concluded that CIGA test provides adequate control of Type I error
rates and is typically more powerful than the other procedures.

Wilcox (1993), studying the design with one within-subjects factor, investigated the use of
trimmed means in testing for the within-subjects effect. Under the violation of the sphericity
assumption and/or normal distribution assumption, Wilcox (1993) compared Type I error and
power rates of usual &-adjusted test ( €) and z-adjusted test using trimmed means and
Winsorized variances ( 27) in repeated measures designs. In general, they show adequate

control of Type I error rates in repeated measure design. Wilcox presented simulation results

indicating that there is close agreement between & and ?:‘7, but the €7 reduces the liberal

tendency of the & In this study Type 1 error rates for a test of a main effect of the

within-subjects factor was investigated for the F test using trimmed data, the &-adjusted
test using trimmed data, and the CIGA tests using untrimmed and trimmed data when the
assumptions of the omnibus F tests are violated in a split plot design. Since the results of
the previous study using skewed distribution and the study using symmetric distributions with
different kurtosis were different, it might be interesting to investigate the performance of the
procedures using the trimmed data.

The classical statistics such as the sample mean and variance are sensitive to outliers.
Trimming and Winsorization refer to the removal and modification of the extreme values of a
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sample. Let y@ denote the ith order observation in a random sample of size N with yoy <

yo < -+ =< ymn. The a-trimmed mean for a = g/N or the g-times trimmed mean is
_— 1 B
ytg=T1\T_—2—g—) i=g+1y (). (1.1)
The g-times Winsorized mean and sum of squared deviations are, respectively,
V= rlay + S yeotey ] (1.2)
we— N (g+D7T & 7D (N—-g)!» .
and,
— bt °4 — i
SSD wg = g(y (g+1) YWg)2+ iz+1(y O YWg)2+g(y (N-g) YWg)z- (13)

Tukey and McLaughlin (1963) found that the Winsorized sample variance is a suitable
estimate of the variance of the trimmed mean.

Let ii and S; denote the sample means vector and dispersion matrix for the Jjth group.

The trimmed version tests were modified by substituting the (K x 1) vector of g-times

trimmed means for K,- and the (K x K) Winsorized dispersion matrix for S; and 'n,' - 2g for

n; in the test statistics and critical values. To produce a trimmed version the 20% trimming
was used in this study.

2. Method

2.1 Design

The conditions included in this study were based on those in Kim (1997). In all conditions
J =2 and K = 4. Four distribution types (g = 0 and h = -244, g =0and h =0, g = 0 and
h = .109, and g = 0 and h = .35), three levels of sphericity of the common v-c matrix (€ =
96, 75, and .40), three levels of the degree of the heterogeneity of the v-c matrices (Ci:Zs =
1:1, 1:2, and 1:5), two levels of total sample size (N = 40 and 60), and three levels of sample
size ratio (ni, nz) = (28, 12), (20, 20), and (12, 28) for N = 40, and (42, 18), (30, 30), and (18,
42) for N = 60 combine to give 216 experimental conditions.

t

2.2 Simulation Procedure

The simulation procedure is same as in Kim (1997). The data for each condition that
involved multivariate normal data were generated by using the following steps:

1. For the jth level of the between-subjects factor Zj, an n;X4 matrix of independent
normally distributed variates was generated. The NORMAL function in SAS (SAS Institute
Inc., 1989) was used to generate all variates.

2. The matrix Z; was transformed to X; = B + diZjU’, where I is an nyjX4 matrix of
means selected to simulate the required configuration of means, d; is a constant selected to
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simulate the required degree of heteroscedasticity, and U is a lower triangular matrix
satisfying the equality 2, = UU". .

The nonnormal data were generated using the g-and-h distribution suggested by Tukey
(1977) and developed by Hoaglin (1985) as the following steps:

I. For the jth level of the between-subjects factor Z; an njX4 matrix of independent
normally distributed variates was generated using the NORMAL function in SAS.

2. An n; x4 matrix X;" was constructed by applying, Xi* = Z; - exp(h Z;%/2).

3. The njX4 matrix X;' was transformed to X; = n + dX;"U’, where B, d;, and U are
defined as in the second step of the procedure for generating multivariate normal data.

Type 1 error rates were obtained under conditions where the population mean vector, 1, was
the null vector. The power were obtained under conditions where the population mean vector
was not the null vector. For each condition, 5000 replications were performed.

3. Results

The distribution of Type I error rates is summarized in Table 1. By Bradley’s (1978)
liberal criterion a test is robust if .05a < T < 15a, where @ is the nominal significance

level. By this criterion Fr and #r tests were liberal in some conditions. The minimum and
maximum values for CIGA and CIGAT tests were within Bradley’'s liberal criterion. The
standard error of these estimated Type I error rates is .0031 from [t(1-1)/5000]Y2 where T is
the actual Type I error rate and if T were .05. So, the critical value for an upper-tailed z
test of Ho: a = .05 is .055 at a .05 significance level. The actual Type I error rates for all
tests were larger than .055 in some conditions.

<Table 1> Distributions of Type I Error Rates at a = .05

Test Min 10 25 50 7 90 Max
Fr 0.0042 0.0196 0.0462 0.0582 0.0988 0.1862 0.2190
ET 0.0038 0.0152 0.0414 0.0494 0.0590 0.1444 0.1840

CIGA 00292 00360 00440 0049 00526 00564  0.0660
CIGAT 00322 00412 00442 0.0478 00520 0.0578 0.0736

Note. Fr = F test with trimmed data; &r = €-adjusted F test with trimmed data;
CIGA = CIGA test; CIGAT = CIGA test with trimmed data.

A 4 (Distribution) x 3 (¢) x 3 (V-C Heteroscedasticity) x 3 (ny/nz) x 2 (N) x 3 (Test)
ANOVA with repeated measures on the test factor was used to analyze the Type I error
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rates. Because many of the factors that affect Type I error rates were included in the study,
the ANOVA was expected to yield a substantial number of significant effects. To compare
the relative size of the effects, the effect component of each mean square was obtained by
using (MSefes — MSemor) / T, where T is the product of the numbers of levels of the factors
not involved in the effect. Defining total variance as the sum of the mean square components

plus the sum of the two error variances, the proportion of total variance, Z)Z, associated with
each effect was calculated (Myers, 1979). Only effects for which @ was larger than .05

were selected for interpretation. The effects which have larger than .05 EJZ were test X
ny/ne interaction (.3185), test x my/nz x 21'3z interaction (.2304), the test main effect (.1647), the
n/nz main effect (0945), and ny/n2 x 21232 interaction (.0644). Shown in Table 2 are the
effects that accounted for more than 1% of the total variance.

<Table 2> Percent of Variance for Type 1 Error Rate of Main Effect
for Effects that Accounted for at least 1% of the variance at a = .05

Effect >

T x n/m 0.3185
T x n/nz x 21:22 0.2304
T 0.1647
ny/ng 0.0945
m/nz x 212 0.0644
T x ¢ 0.0467
T x 212, 0.0371

Note. T = Test; mi/n2 = Sample Size Arrangement,
21:22 = V-C Heteroscedasticity; € = Sphericity.

Means for interpreting the test, ni/nz, and 2::3; interaction are presented in Table 3. Results
in the table show that when sample sizes are balanced, heterogeneity of the v-c matrices has
little effect on the estimated actual Type 1 error rate (7). For balanced sample sizes, all
tests except the Fr test maintain 7 close to a. The Type I error rates are inflated for the
Fr test. When the v-c matrices are homogeneous, ni/nz appears to have relatively little effect
on 1. However, Type 1 error rates are higher when the group sizes are unbalanced than
when the group sizes are balanced for all four tests. The CIGA and CIGAr have the Type 1
error rates below the nominal Type I error rate when the v-c matrices are homogeneous.

When heterogeneous v-c matrices are positively paired with unequal group sizes (Z1:22 =/=

1:1, m<ny), Type I error rates are strongly deflated for the Fr test and the &r test. The
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deflation is worse for &t test than Fr.

The CIGAT test shows a moderate degree of deflation.

The CIGA test shows a minor degree of deflation.
Both CIGA and CIGAT keep 7 close

to a. When heterogeneous v-c matrices are negatively paired with unequal group sizes (51:3p

#121, ni>nz), Type I error rates are strongly inflated for the Fr test and the &t test. The

inflation is larger for Fr than ér.

the &r test should be avoided.

<Table 3> Estimated Type I Error Rate of Test for Degree of
Variance-Covariance Matrices Heteroscedasticity and Sample Size

Arrangement Combinations at a = .05

The CIGA and CIGAT tests show a minor degree of
inflation. The results show that if heterogeneity of v-c matrices is expected, the Fr test and

2122 Test ni<ng ni=ng ni>ng
11 Fr 00679 00644 00676
Er 00509 00485  0.0512
CIGA 00486 00468  0.04%4
CIGAT 00496 00471  0.0500
12 Fr 00343 00642  0.1187
Er 0.0232 00487  0.0957
CIGA 00472 00475 00493
CIGAT 00470 00469 00518
15 Fr 00159 00670  0.1974
Er 00097 00504  0.1658
CIGA 00462 00462 00512
CIGAT 00451 00470 00525

Note. See Table 1 for abbreviations.

The Fr and the

4. Conclusions

er did not perform well when the wunbalanced sample sizes and

heterogeneous v-c¢ matrices are paired. The CIGA test was robust for the violations of the

assumptions for the omnibus test of within-subjects main effect in the split plot design.

It
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appears that CIGA is the best procedure in terms of Type I error rate. However, both CIGA
and CIGAr maintain the Type 1 error rates close to nominal Type I error rate. Kim (1997)

reported that the F test and the £-adjusted test did not control the Type I error ratc when
the design is unbalanced and v-c matrices are heterogeneous, and when the sphericity

assumption is violated. The trimmed versions of F and Ts—adjusted tests temper the liberal
tendency of the tests, but they still did not control the Type I error rate in those conditions.

So, the F tests and the Z-adjusted tests should be avoided when heterogeneous v-c matrices
are paired with unbalanced sample sizes.

References

[1] Algina, J. (1994). Some alternative approx\imate tests for a split plot design. Multivariate
Behavioral Research, 29, 365-384.

[2] Algina, J., & Oshima, T. C. (1995). An improved general approximation test for the main
effect in a split-plot design.  British Journal of Mathematical and Statistical
Psychology, 48, 149-160.

[3] Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study of analysis
of variance problems: I Effect of inequality of variance in the one-way
classification. Annals of Mathematical Statistics, 25, 290-302.

[4] Bradley, J. C. (1978). Robustness? British Journal of Mathematical and Statistical
Psychology, 31, 144-152.

[5] Brogan, D. R., & Kutner, M. H. (1980). Comparative analysis of pretest-posttest research
designs. The American Statistician, 34(4), 229-232.

[6] Greenhouse, S. W., & Geisser, S. (1959). On methods in the analysis of profile data.
Psychometrika, 24, 95-112.

[7] Hoaglin, D. C. (1985). Summarizing shape numerically: The g-and-h distributions. In D.
Hoaglin, F. Mosteller, & J. Tukey (Eds.), Exploring data tables, trends, and
shapes. New York: Wiley.

[8] Huynh, H. (1978). Some approximate tests for repeated measurement designs.
Psvchometrika, 43(2), 161-175.

[9] Huynh, H, & Feldt, L. S. (1970). Conditions under which mean squared ratios in repeated
measurements designs have exact F distributions. Journal o the American
Statistical Assoctation, 65, 1582-1589.

[10] Huynh, H., & Feldt, L. S. (1976). Estimation of the Box correction for degrees of
freedom from sample data in randomized block and split-plot designs. Journal of
Educational Statistics, 1(1), 69-82.

[11] Keselman, J. C., & Keselman, H. J. (1990). Analysing unbalanced repeated measures
designs. British Journal of Mathematical and Statistical Psychology, 43, 265-282.



588 Hyunchul Kim

[12] Kim, H. (1997). Type I error rates and power for omnibus tests of repeated measures
means in the split plot design, The Korean Communications in Statistics, 4(1)
139-149

(13] Lecoutre, B. (1991). A correction for the € approximate test in repeated measures designs
with two or more independent groups. Journal of Educational Statistics, 16,
371-372.

[14] Myers, J. L. (1979). Fundamentals of experimental design (3rd ed.). Boston: Allyn and
Bacon.

[15] Rogan, J. C, Keselman, H. J., & Mendoza, J. L. (1979). Analysis of repeated
measurements.  British Journal of Mathematical and Statistical Psychology, 32,
269-286.

[16] SAS Institute Inc. (1989). SAS/IML Software: Usage and Reference, Version 6, st ed.
Cary, NC: Author.

[17) Tukey, J. W. (1977). . Exploratory data analysis. Reading, MA, Addison-Wesley.

[18] Tukey, J. W., & McLaughlin, D. H. (1963). Less vulnerable confidence and significance
procedures for location based on a single sample: Trimming/Winsorization 1.
Sankyha A, 25, 331-352.

[19] Wilcox, R. R. (1993). Analyzing repeated measures or randomized block designs using
trimmed means. British Journal of Mathematical and Statistical Psychology, 46,
63-76.



