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On a Robust Test for Parallelism of Regression
Lincs against Ordered Alternatives 1

Moon Sup Song? and Jin Ho Kim3)

Abstract

A robust test is proposed for the problem of testing the parallelism of several
regression lines against ordered alternatives. The proposed test statistic is based on a
linear combination of one-step pairwise GM-estimators. We compare the performance
of the proposed test with that of the other tests through a Monte Carlo simulation.
The results of the simulation study show that the proposed test has stable levels,
good empirical powers in various circumstances, and particularly higher empirical
powers under the presence of extreme outliers or leverage points.

1. Introduction

We are interested in the problem of testing the equality of slopes of several regression
lines against the alternatives that the slopes are in increasing (or decreasing) order of
magnitude. In practical situations such as biology and ecology, the problem of ordered
alternatives in slope parameters could arise. Adichie (1976) and Rao and Gore (1984) stated
these situations. For example, a biologist may be interested in knowing whether the rate of
dependence of infection on exposure is the same for groups of rats of increasing ages.

Consider the % simple regression lines

y‘-j=a;+B,~ x,-,-+e,-,-, l-=1,"',k ’ ]'=1,"',n,-, (11)
where the @;’'s and B;’s are unknown regression parameters, the x;'s are known constants,
and the ¢;'s are independent and identically distributed (iid) random variables with a

continuous symmetric distribution function F with finite variance o°. Here, the a;'s are

nuisance parameters and the J;’s are the slope parameters of interest.

We are concerned with the problem of testing the parallelism of regression lines
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Hy: gy = By= - = f,= B (unknown) (1.2)
against the ordered alternatives
H : B < f < - £ B, (with at least one strict inequality). (1.3

In the case of k=2, the classical #-test is a most powerful test at normal distribution.
But, the f-test is very sensitive to the assumption of normality, especially to outliers. As an

alternative of #-test, some nonparametric tests have been considered by Hollander (1970) and
Potthoff (1974), among others.

For the parallelism of general £ regression lines against ordered alternatives, parametric or
nonparametric tests have been considered by Adichie (1976), Rao and Gore (1984), and Sin
(1993) among others. Adichie (1976) proposed some parametric and nonparametric tests.
Parametric tests are the likelihood ratio (LR) test and the scores test based on a linear
combination of maximum likelihood estimators (MLE) of slopes. Nonparametric tests are rank
analogues of the parametric tests. Rao and Gore (1984) also proposed distribution—free tests
for the same problem. But they assumed that the design points are equispaced and each line
has the same number of observations. '

However, it is questionable whether these tests perform well in the presence of outliers,
although some tests are distribution-free. Especially, none of these have been considered in
the case of outliers in x-direction or leverage points. We consider a robust test based on the
one-step pairwise GM-estimator (Song and Kim, 1997) for the parallelism of % regression
lines. We expect that the test is reasonably powerful and robust, particularly in the presence
of bad leverage points.

The parametric and nonparametric tests proposed by Adichie (1976) are briefly reviewed in
Section 2. It is known that the procedure proposed by Rao and Gore (1984) does not appear
to be better than the Adichie’s test (Jee, 1989; Song, Kim, Jeon, and Park, 1989) and the
empirical powers of Adichie’s LR test and its rank version are similar to those of the scores
test and its rank analogue, respectively (Jee, 1989; Lee, 1990). We hence include only the
Adichie’s parametric and nonparametric tests based on scores to compare with our proposed
test.

In Section 3 we propose the test statistic based on a linear combination of one-step
pairwise GM-estimators. We compare the performance of the proposed test with that of others
through a Monte Carlo study in Section 4. The results of the simulation study show that the
proposed test has stable levels, good empirical powers in various circumstances, and
particularly higher empirical powers under the presence of extreme outliers or leverage points.

2. Adichie’s Tests Based on Scores

Adichie (1976) proposed some parametric and nonparametric tests based on scores.
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Parametric test is a linear combination of maximum likelihood estimators of slopes.
Nonparametric test is a rank analogue of the parametric test. To introduce Adichie’s tests, we
denote some notations. Let, for 1=1,2,*, 4,

x= ini/ni; yi= z]:yii/ni.
w,-2=2 (x5 — %)% W2=Z‘ wt; r= wl/w?
/'S’,-=$(x,-,~ — Xyl wli B =2‘r,-3; ; N=Zln‘- @.1)
The parametric scores test statistic, proposed by Adichie (1976), is defined as
§S=2.CBi.  (ZCi=0). (2.2)

It is a linear combination of the MLE of B;'s under H;. Adichie (1976) showed that .S has
a normal distribution with mean zcg,@; and variance ¢ Z(Ciz / w?) at normal distribution.
When the scores C; are nondecreasing, the test rejects Hj for large values of S.

The power of S-test which was derived by Adichie (1976), depends on the scores C;.

When the alternative f;'s are preassigned, optimum scores which maximize the power are

given by

Ci= wi (Bi— 27;B). (2.3)
However, we can not use these scores, since the f;'s are not usually specified under the
alternatives. Adichie (1976) suggested, instead of B; in (2.3), to use

Q= w12+...+ wi~12+( wiz/Z). 2.4
That is, the scores become

Ci= wiz(Qi_Z v Q). (2.5
When ¢ is unknown, S can be studentized to yield S, which has a Student ¢
distribution with (N—2k) degrees of freedom. The statistic S, is defined by
S =[2(Cl/w)]1 S/ 5, (2.6)
where
&=y vi— Bilxg— )1 /(N—28).

Adichie (1976) also proposed a nonparametric test as a rank version of the test statistic S
in (2.2). To introduce the rank version, consider the statistic

T,= 2 (= %) R [(n+1) w?,

where R;" is the rank of the jth residual, yi;— B(x;— x;), among the ith group of
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residuals with some estimator Z’ of the common slope A. To derive an estimator of the

common slope A, Adichie (1976) defined the statistic
A= ZZ]l(x,-,-— 7C;‘)Rij/Wz,
where R; is the rank of y;—Bx; based on #; observations within the #th group of

samples, Then, the estimator 71" is defined by

73=( 7?1 + 732)/2,

where
Bi=sup{B:T(A)>0} and B,= inf (8: T(H) < 0}.
The rank analogue of the scores test, proposed by Adichie (1976), is of the form
Sr=2.CiTy, (2C;=0). @27
Adichie (1976) showed also that, under H;, W- Sy is asymptotically N(0, »*), where
vi=(1/ IZ)Z(C; 2/7:). We reject the null hypothesis Hj for large values of Sk.

3. The Pairwise GM-Estimator and the Proposed Test Statistic
3.1 The One-Step Pairwise GM-Estimator

To construct a test statistic based on a linear combination of one-step pairwise

GM~estimators proposed by Song and Kim (1997), we briefly introduce the pairwise
GM-estimator.

In the subsection, we consider the multiple linear regression model
vi=a+ x,—TB+e,~, i=1,2,-,n, (3.1
where (x;, ¥;),7=1,2,*-,n, is a sequence of iid random variables with distribution function
F(x,v) and density f(x,y), x; is a px1 vector of explanatory variables, and (a, 87)7 is
a (p+1) X1 vector of parameters. Assume that the errors ( &;'s) are iid, independent of x,
symmetric about 0, and have a finite variance ¢°>. Given an estimator (2!, /ﬁ), the residuals
are denoted by #;(a, /B)=y,-— a— x,-T/B and 7;( /B)=y,-— x,-T I/§ )
The pairwise GM-estimator is defined by the solution of the (vector) equation
g= (;) - PIP I 77( x; xj, 7 B‘)/é_dri( 8) )(x,-— x)=0, (3.2)

where the 7-function is defined by
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DA, g 24 BriB)y

with an odd and bounded function ¢ and 2¢°= Var{r{ B)—r{ B)}. Song and Kim (1997)

proposed the weight w; to downweight the leverage points and also outliers simultaneously

— w( r,(ﬁ) a,(B))

W(xi.x)

as follows:

(3.3)
_ [v(x.-)v(x;) . (B —r{B)}V20l<a
0 ,  Oothevwise,
where a is a constant and (%) is a measure of leverageness defined as
. b ¥2
v(x)—mm[l,{ G T T ) J ] (34)

which was considered by Simpson, Ruppert, and Carroll (1992). Note that m, and C, are the

minimum volume ellipsoid (MVE) estimators of location and covariance of X, respectively, and

b is a quantile of the chi-squared distribution with p degrees of freedom.
Let E, be an initial estimator of B such as the least trimmed squares (LTS) estimator,
which was proposed by Rousseeuw (1984). Let 0 be a robust estimator of ¢ such as
o= 1.4826 x MAD{r ( ’ﬂ\o)}, where MAD is the median absolute deviation defined as
MAD (7 By = med{| r B) — med;(r( Bo))|}.
The one-step pairwise GM-estimator (Song and Kim, 1997) based on ,E() is defined, by

taking a first-order Taylor-series expansion of the left side of (3.2) about A, as follows:

B=B+V2 B 'g, (35)
where
i () ZE o BB N
and
A= ( ) 22.<, iﬂ/"( V;(EJE—%:.'(E;) )(x;— x)(xj—x)T (36)
with
Bo= ufxn; (B :(79‘0)) .

_ {v(x,-)v(x;) . W (B —rdB)YIV2 3l < a

0 ,  otherwise.
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Here ¢ denotes ¢ (£)=(0/3)¢(?).

Remark 1. The one-step pairwise estimator inherits the breakdown point of an initial
estimator and has a bounded influence function. So, it can obtain the asymptotic breakdown
point of .5.

We now state a theorem concerning the asymptotic normality of the one-step pairwise
GM-estimator 8. The following assumptions are used in the theorem.

(Al) ¢ is odd and bounded with properties such that ¢ & ¢ exist, and ¢ () &
|¢""(H| are bounded.

(A2) (g) - 22 i w,-,~¢'( 1’,‘( B)‘/-—;:'(ﬂ) )(x,-— x,-)(x,-— x,-)T—E»H, where

H= f f w,y¢’( rZ( B(I?))J%O_rl( B(m) )( X9 — xl)( X9 — Il) TdF(xz, yz)dF(xl, yl) (38)

and H is a positive definite pX$ matrix.
(A3) lw(x;, x;, )(xj— x)ll is bounded for any ¢ and x.

(A4) wi,-=w(x,-, x;, V;(B)\/g:,-(ﬁ)) is an even function of »{(8)—7r{B) such that as

n—o0 (a) (g) - ZZ«;(%‘:‘—(Bl)z wllx;— xjll = 0,(1),

-1
(b) (g) I i wi lx;— xj”3=0p(1),

1 r{B)—r{8B)
(c) 72( \/éa

@ L 3wy llz—x12= 04D, for any .

(A5) For any 1<i<n,
1 Zﬂ(x.» xj, r—’(%:ﬂ )( xj— %))

20
2, fri(x.-, ;. M)(xﬁ x)dF(x;, ;).

) w1 x;— x;ll= 0,(1), for any £, and

20

—1
Theorem 3.1. Assume that (A1) ~(A5) and (5‘) >3 ;illx;— xdl= 0,(1) hold. Suppose
n'2(By— B)=0,(1) and n' (Gy— )= 0,(1) with ¢>0, then

n(25) NBB-IE ' (B(B-81 -2 ¢
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where H is defined by (3.6) and
E=4% Z.{ '}1_ z,: ﬂ(x,—, Xj, A B(:/)é_g":( &) )( X;— xi)}

— o~ T
x { -}; 2 rz(xi. x;, 74 B‘:/)é_?;:]‘( By )( x— x.—)}

Proof. We denote #»{(B)=y;— x.-TB and 7{ /Eo)zy,»-— x,-T’Eo by & and 7,
respectively, for notational simplicity.
We have, by Theorem 3.4 and Theorem 3.5 of Song and Kim (1997),

22 (V2 &) VB (B - B) S N(0,E),

where

E=4 f{ fn(xl, X3, %g%)( Xy — x1)dF( %, 3’2)] (3.9
&— & T

x{f’)(xhxz,—‘]‘—z 50 )(xz“xl)dF(xz.yz)} dF(x,y1).
We now consider the asymptotic behaviour  of E.  Let di(B, 0y)=
S9(x;, x5, (e;— &)/V2 Go)(x;— x;). We obtain the following equations by taking a
J

first-order Taylor series expansion about By and V20, respectively:

Yi— 7

‘) (x;— %) +(V2 ?70)’12;7/(xi. xi.7570') (3.10)
x (x;— x:)(x;— %) T (Bo— B)+ O n 1),

d:( B, ?70)= 2;77(1.'. Xj, :}— 4

7 a
di( B, Go)= Zm( xi, x;,ﬁ‘;%fi)(x;— 2)— (2 0—V29) (V2 o) (3.11)

Ei— & -1/2)

, &;—&; .
x Ziﬂ(xi,xi,—ﬁo__)(‘wo__)(x; x)+ O0y(n
Equating (3.10) and (3.11), under the assumptions on /B\o, Gy, (Al), and (A4), after some

simplification, E can be represented as follows.

E= 4—}2—2{ %Zl:ﬂ(x,-, x;, %?)(xi’xi)]

T
£;— & _
X { % ZJ: 0(xi.xi.‘7’_' 20_‘ )(Ii— x,-)} +0,(n %)
Hence by (A5), E 2, E and the theorem follows. [ ]

In the case of simple linear regression, the pairwise GM-estimator B of the slope

parameter has asymptotically a normal distribution. As a corollary of Theorem 3.1, we have
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the following results.

Corollary 3.1. Assume that the conditions in Theorem 3.1 are satistified. Then, in the case
of simple regression, we have the following asymptotic normality:

Va(B—8)/ (25,°2) % w0, 1)
where X = E/ B? with

=41 1 74 By) — A Bo) 2
_4; l=1{7 ,=177(xi’xi’ OJE’&O g )(x,‘_x")] s

E
=3 B & (2 ),

3.2 The Proposed Test Statistic

From Corollary 3.1, we can construct a test statistic for testing the the parallelism of &
regression lines (1.1). The proposed test statistic is defined as follows.

C:Bi
Z= —, 77 (312)
(2 2:1 0o Cizfi/ni)

where C/'s are scores to be determined satisfying i:l C:=0, 0y is the scale estimator for
&

the ith line based on the initial estimator By, and X, = E;/ H,;? with
2

a1l A1 . rdB,)— 7 B,)
E’—_47' = [7' 2177 Xijs X ik 0“2 /&0‘_ L (x,k—-x,,)]
and
_ 1 n; 1 oo , rk(ﬁ i)_ Vj(? i)
B= n; ,21[7‘ ,,Z:l Wi § ‘O/é . 0 (xik—.xij)z} .

Here By, 30;, and B, are an initial estimator of B:, a robust estimator of ¢, and the
pairwise GM-estimator of B; in the ith line, respectively. Since Z;, has asymptotically a
normal distribution, we reject Hj in favour of H, if

Zy2z,,
where z, is an upper «-quantile of the standard normal distribution.

The scores must be chosen to maximize the asymptotic power of the test. The power of
Z, against any given f;<---<f, is given by
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o( 2Cibil 2 X, CA5i n) 2 2.),
where @ is the standard normal distribution function and J3; =E;/ H? Here H; and E;

are the scalar version of H in (3.8) and E in (3.9), respectively, in the 7th line. Thus, the
optimum scores, which can be derived as Adichie (1976), are

Ci= niz‘i_l(ﬂi_( ;2:1 LB, (3.13)

where t;= 1,3 \( g:‘an‘,-_l) ~!. These scores are similar to those in (2.3). Therefore, we

propose to use

Ci= m¥(Di— X,0,0), (3.14)
where
m? =n;x med{|x;— med{x;)|}?,
D;= m*+-+ mi_ 2+ (m;%2),
and

oi= mj’| g‘mfz.

Note that m,~2 is a robust version of w,~2 and has a high breakdown point for design points.

4. A Small-Sample Monte Carlo Study

In this section we compare the small-sample behaviors of the proposed test Z; and the

Adichie’'s tests. The measures of performances evaluated are empirical powers and significance
levels.

4.1 A Robust Scale Estimator

To use Z; in (3.12) as a test statisticc we have to choose a robust scale estimator 0.
Computing robust GM-estimators of regression parameters, the scale estimator based on the

median absolute deviation, o= 1.4826 x MAD{r(By)}, is most widely used. But, it is well

known that for any initial estimator Z?\O, MAD usually underestimates the scale in normal

case. Thus, for example, Rousseeuw and Leroy (1987) considered

T =1.48%6 (1+7%)\/ med{r;X( By},
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where ?0 is the least median of squares (LMS) estimator, and used the standardized residual

A . . -
r;/ 6 to identify outliers.

Using the LTS estimator as an initial estimator, we compare the following three scale
estimators through a Monte Carlo study.

i) 0=1.4826 MAD{r}, (4.1)
where 7;=y; — @ — Byx; and (ay, By) is the LTS estimator of (a, 8).

i) 0 =1.4826(1+4/(n—1))x MAD{r}}. (4.2)

ey~ 20;‘7’.’2 vz . _[1, if |7/ 5 ¢2.5

i) o= (2—0,——1) , with a,'—{o' otherwise. (4.3

Remark 2. i) The correction factor (1+4/(n—1)) in the definition of & is obtained
through a Monte Carlo simulation for various distributions as in Rousseeuw and Leroy (1987).
ii) All estimators have a 50% breakdown point.

To evaluate small-sample properties of the three scale estimators we performed a Monte
Carlo simulation study in simple regression model y;=a+ B8x;+¢&; i=1,-,n. In all cases,
we set x;=¢. For simplicity, we let a=0, A=1. The number of observations are #=10,
20, 30, and 100. In each case 1,000 trials are performed. The error term &;'s are randomly

generated from normal. The performance measures evaluated are empirical means (MEAN)
and mean squared errors (MSE).

Table 4.1 shows the results of the empirical study to compare the performances of the three
scale estimators in (4.1) ~(4.3). In the case of n=10, the estimators tend to underestimate

Table 4.1. Empirical MEAN and MSE of estimators of ¢

o Ca o
Empirical MEAN
n= 10 0.6672 0.9637 0.8737
n= 20 0.8505 1.0296 0.9789
n= 30 0.8911 1.0140 0.9839
n=100 0.9706 1.0098 0.9807
Empirical MSE
n= 10 0.4540 0.4476 - 0.4155
n= 20 0.2848 0.2950 0.2517
n= 30 0.2238 0.2230 0.1967

n=100 0.1214 0.1230 0.1049
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the scale. As the sample size increases, the bias is reduced. However, for ‘o the bias is still
significant for moderately large samples. o and 0 have better performances than o in
MEAN. In terms of MSE & is better than ¢ and o . ¢ and o are very similar in MSE.

In terms of bias, o is the best among the three estimators. We thus choose T as an

estimator of the scale parameter in defining the test statistic Zj.

4.2 Results of a Monte Carlo Study

We now consider the problem of testing the parallelism of three regression lines against
ordered alternatives. We thus consider the case of 2=3. The sample size of each line is 20.
We set a,=0 for each 1. "To construct ordered alternatives, we set the equally-spaced
slopes given by

Bi=B+(GE—-1)md, i=1,2,3,
where & is the standard deviation of the MLE of A from the combined sample, and
m=0,1,2,3. The increment of the values of m indicates the change of slopes from the null
parameters space to divergent alternatives. S, is set to be 1.

To compare the small-sample behavior of the proposed tests, we consider the following four
situations:

Case 1) No leverage points and no outliers.
Case 2) No leverage points but with some outliers only in y-direction.

Case 3) Some bad leverage points, i.e., outliers both in x- and y-directions.
Case 4) Some bad leverage points and some good leverage points.

For Case 1, the design point x's are fixed with (1, 2,-:*, 20) and the error term &;’s are
randomly generated from the standard normal N(0,1).

For Case 2, the x's are fixed as in Case 1. But the error term &;’s are randomly
generated from the double exponential and two contaminated normals : CN(0.1,3) and
CN(0.2,5), where the distribution function of CN(e, 0) is given by F(x)=
(11— d(x)+ed(x/0).

For Case 3, we first generate the same x’'s and ¥’s as in Case 1. To make some bad
leveragg points, we choose two points randomly in each line, and replace these (x;,¥;) by
(30+ x;/20, v;).

For Case 4, first we generate the same x's and &;’s as in Case 1. To make some good

leverage points, after replacing two randomly selected x; by (30+2x;/20), we obtain y;
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by (1.1). To make some bad leverage points, we choose two points randomly from the

remaining samples not selected as good leverage points, and replace these (x;,-,y,-,-) by
(30 +x;/20, v;).

In computing the one-step GM-estimator, Huber’'s ¢ with the tuning constant c¢=1.5 is
used. To compute the initial estimator B, the LTS estimator is used. We have to calculate
the weights in (3.7). In simple linear regression model, the leverageness »(x;) of the jth
observation in the 4 line can be written as

r/2
(xii'—mx.-) C:_l(xii_mx.-) ) ]' 44

where m, = med;{x;} and C,c'.=(1.48261141‘1D,-{x(,<})2 (Naranjo and Hettmansperger, 1994).

v(x;) =min{1. (

r=2 and b= 2*(1,0.975), and w; with a=2.7 in (3.7) are also used.

The simulation was performed on a personal computer with a Pentium 150 MHz processor
by using S-PLUS (Ver. 3.2 Release 1 for MS Windows 3.1 : 1994). The normal and uniform
variates were generated by the S-PLUS function rmorm and runif, respectively. And LTS
estimates were calculated by S-PLUS functions Isfit.

1,000 trials for each experiment are performed. For each setting, the values of the test
statistics are calculated and compared with their respective critical values at significance levels
of @=0.05 and @=0.10. The results are summarized in Table 4.2. The empirical powers at
m=1{ indicate the empirical significance levels.

By observing Table 4.2, we find that the proposed test has stable empirical levels in various
situations. As expected, the parametric test S, performs well with respect to empirical level

and power in the normal case. However, the parametric test S; has unstable empirical levels
in the presence of leverage points. For medium tailed distributions such as normal, double
exponential, and CN(0.1,3) distributions, the empirical powers of the proposed test are
competitive to those of others. Moreover, the proposed test is better in power than other
competitors for heavy tailed distribution such as CN(0.2,5). On the other hand, in the
presence of leverage points, other competitors have unstable empirical levels, that is, very
sensitive to high leverage points, but the proposed test has still stable empirical level and
good performances. Therefore, the proposed test is considerably robust to leverage points as
well as substantial outliers for testing the parallelism of regression lines.
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Table 4.2. Empirical Powers (Replication=1,000)

m S t SR ZO
Case 1 : No leverage points, &~N(0,1) (§=0.02)
a=0.05
0 0.049 0.045 0.056
1 0.174 0.155 0.150
2 0.408 0.389 0.343
3 0.675 0.645 0.582
a=0.10
0 0.092 0.096 0.092
1 0.283 0.271 0.267
2 0.555 0.536 0.482
3 0.786 0.779 0.709
Case 2 : No leverage points, &~DE(0,1) (6=0.02)
a=0.05
0 0.041 0.046 0.051
1 0.151 0.159 0.179
2 0.294 0.337 0.356
3 0.473 0.533 0.560
=0.10
0 0.086 0.096 0.106
1 0.245 0.257 0.265
2 0.420 0.469 0.486
3 0.617 0.690 0.692
Case 2 : No leverage points, &~CMJ0.1,(0,3)) (6=0.025)
a=0.05
0 0.050 0.042 0.045
1 0.150 0.177 0.167
2 0.398 0.444 0.429
3 0.665 0.724 0.687
a=0.10
0 0.101 0.001 0.095
1 0.259 0.276 0.274
2 0.547 0.593 0.564
3 0.781 0.843 0.804
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Table 4.2. (Continued)

m S ¢ S R Zo
Case 2 No leverage points, &~CMG0.2,(0,5)) (6=0.03)
a=0.05
0 0.051 0.042 0.054
1 0.137 0.172 0.196
2 0.247 0.424 0.461
3 0.419 0.691 0.734
a=0.10
0 0.008 0.100 0.103
1 0.216 0.285 0.300
2 0.370 0.581 0.586
3 0.562 0.818 0.824

Case 3 : 10% Bad leverage points, (8=0.03)

a=0.05
0 0.153 0.068 0.050
1 0.194 0.141 0.218
2 0.267 0.308 0.563
3 0.262 0.449 0.828
2=0.10
0 0.212 0.118 0.092
1 0.243 0.223 0.337
2 0.330 0434 0.694
3 0.319 0.583 0.916

Case 4 : 10% Bad and 10% Good leverage points, (8=0.02)

a=0.05
0 0.150 0.073 0.048
1 0.182 0.189 0.183
2 0.227 0.348 0.469
3 0.222 0.517 0.706
a=0(.10
0 0.213 0.133 0.100
1 0.258 0.287 . 0.301
2 0.291 0.472 0.601
3 0.297 0.614 0.827
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