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Second Derivative Estimation for Performance Measures
in a Markov Renewal Process

Heung Sik Parkl

Abstract

In this paper, we find the second derivative of mean busy cycle with respect to a
parameter of inter-arrival time distribution. We show that this derivative can be
estimated from a single sample path. We do the similar thing for the mean number
of arrivals during busy cycle.

1. Introduction

Recently, perturbation analysis method has been introduced as an efficient way of estimating
derivatives for performance measures from a single sample path of a discrete-event system.
To estimate derivative with respect to a given parameter, the perturbation analysis method
requires only one simulation run. But the traditional finite difference derivative estimates
involve two or more simulation runs. The advantage in the number of simulation runs
becomes significant when the differential parameter is an N-dimensional vector. Estimating the

entries of the NxN Hessian matrix by means of finite differences would require INE+1
simulation runs whereas the perturbation analysis method still requires only one.

Since it was introduced, perturbation analysis method has been applied to many discrete
event systerhs and proved to be an efficient way to find derivative estimation for the mean
performance measures[Suri and Zazanis(1988), Glasserman and Gong(1990), Park(1992), etc.].
However, with the exception of [Fu and Hu(1993), Zazanis and Suri(1994)] all previous work
on derivative estimation has focused on the problem of first derivative estimation. Zazanis and
Suri(1994) considered the steady state mean system time in a GI/G/1 queue. They showed the
second derivative with respect to a parameter of the service time distribution exists and
obtained strongly consistent perturbation analysis estimates for it as well. They extended
these results to a parameters of the interarrival time distribution. Fu and Hu(1993) considered
the GI/G/m queue and derived an estimator for the second derivative of mean steady-state
system time with respect to a parameter of the service time distribution. In this paper, we
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consider a Markov renewal process which was defined in Park(1996), and derive the second
derivative of some performance measures with respect to a parameter of given distribution.

2. Second Derivative Estimation of the Mean Number
of Arrivals During Busy Cycle

Let X and Y are independent random variables which are distributed according to F(x,0)
and G(y,t) respectively. Using these X and Y, we construct the underlying stochastic process
as in Park(1996), that is, the process will be a Markov renewal process where the embedded
Markov chain is a random walk on the nonnegative integers with a reflecting barrier at zero.
As the sample paths have an obvious interpretations as queueing process we will use freely
terms such as "busy cycle”, "arrivals”, etc,. In this section, we will find the second derivative
of mean number of arrivals during busy cycle with respect to the parameter 8 of distribution
function F(x,8). We will use the same notations as in Park(1996). But for convenience we will
define some notations here again. ‘

C.0(8) denotes the length of a busy cycle ie. the recurrence time of state 0. C ne)
denotes the time for the first transition from state i to state 0.

Ny o(8) means the number of customers served during a busy cycle Cgo(6). Similarly,
N o(6) means the number of customers served during C i0(0).

Let f(x) and g(y) be the probability density functions of X and Y respectively, ie. dF(x,
8)/dx = f(x) and dG(y,u)/dy = g(y). When we emphasize that f(x) depends on 8, we will use
f(x,8) instead of f(x).

With these notations, we now begin to derive the second derivative of N 0.0(8) with respect
to 8. From theorem 1 of Park(1996), we have

dEIN,(0)] _ _E[A1NY]

do =ToP(Y{X) E[N o(OIE1— N, ()]
=‘E.9P(m—yly<)o EIN, o()]1{1-2EI Ny «(O)]) 0

On the other hand,

EAVY] _ *_Ayy 1—F\) ‘
PY<X) — b T=F(y) Hyx) &N

— > .

= L —MLI_F(J,) 2NV X)ds

3 Y

_E{—-’QLI_F(” |Y¢X], @)
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dEI N (8 .
From (1) and (2), we see that —E—[d?’f)—()] can be observed from a single sample path.
d®E[Ng (8
By differentiating both side of the expression (1), we see that El 4 6(?)20( )] also can be

obtained from sample path if dELA Y)l;’]&/ P(Y<X)} .

can be obtained.
In the following, we will show that d{HﬂY)?a/ K(Y<X)}

can be obtained from sample

path. First, we need the following assumptions.
Let a and b are positive numbers such that a<b.

Al. P(X<Y)<1/2 for all 8 in [ab].

A2. E[X]<w, E[Y]<e,

A3. 0 is a scale parameter of F(x,0).

A4. |dF(x,8)/d08|<M for some M>0, and for all x=0 and all 0 in [a,bl.

AS. |df(x,0)/d8I<M for some M>0, and for all x20 and all 9 in [abl.

A6. If(x,0 )|sM for some M>0, and for all x>0 and all 8 in [ab].
lg(y)IsM for some M>0, and for all y20.

Al1,A2 and A3 are same as in Park(1996). It can be shown that A4, and A5 holds for the
wide range of distributions which have scale parameter. For example, in the case of Weibull
distribution with p>1,

EE) | = — ()L expl — ()
<( LB ) expl - (L))

Since yﬁ(%)ﬂ(f)exp[—(%’)ﬁ]:o, there exists M>0 such that |dF(Y)/d8l<M for ail

Y20 and all 8 in [a,b] ie assumption A4 holds. Similarly, we can show that assumption A5
holds.

Now we prove the following theorem.

dEIN
Theorem 1. Assume that Hd—oeo(g)] exists and assumptions Al through A6 hold.
dZ
Then, the second derivative __E[ilveoz,—o(m also exists and it can be estimated from a single

sample path.

Proof) From the arguments following expression (2), it will be enough to show that

dE AY) IC;]B/P( Y<{X)}

can be obtained from a single sample path.
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AdEANY] _ . EHAY,0)Y—AY.0—A40)Y]
do 460 46
— 3 dRY.0Y ,
lim BY =52 1ol &)

’

where ¢ is a number between 8 and 8-A8,

By the assumptions A2 and A5, we can use Lebesgue convergence theorem on the above
expression (3). Then the above expression (3) becomes

H lim —2A 56! aY

460

_ y dfNY

| o=

Since P(Y<X)=E[1-F(Y)],

d(Y<X) _ . ELF(Y.0)—F(Y,0+46)]
dé 8% 6

(5)

o dF(Y.6)
lim E1—=g

| o=el,

where ¢ is a number between 8 and 8+A8. By the assumption A4 and Lebesgue convergence

theorem, the above expression (5) becomes

o o dF(Y.0)
EUim =g | o=

_ dF
=- £, ©

From the expressions (3), (4), (5), and (6),

AELANYIAYX) _EdANY/do]l | FAV)Y] EdR(Y)/dol o
d KY<X) TTRKX) | AY<X)

Using similar method as in the expression (2), the above expression (7) becomes

dA Y)Y d6 Y dF(Y)/d6
E[—%IY<)Q+E[—I%IY<X]E[ PR 1y x) @®

Every terms in the expression (8) can be observed from sample path. Hence, theorem 1 is

proved.
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3. Second Derivative Estimation for the Mean Length of Busy Cycle

d°FL Cy ()]
do*

be observed from sample path. First, let us define two more notations.

In this section, we will show that the second derivative exists and it can

Let U be the set of indices at which the process jumps up during Cg¢(6). Ul denotes the
cardinal number during a busy cycle Cg¢(6). We note that |Ul equals to Ny ().

Theorem 2. Assume two more assumptions on those of theorem 1, namely
1. E[X%(6)]<M for all 8 in [ab] and some M>0

2. %‘t’—(ﬂ exists

d’ELCo.(9)]

Th
en, d 62

also exists and it can be estimated from a single sample path.

Proof) From theorem 2 in Park(1996), we have

B _ 1 gy 5 x)--ELARLL kN, (9)1ELCo0(6)) ©)

On the other hand,

ECyo(O]=2E[C,o(0)]=2{E[Cy (O] — EL X;]1}

and

E ;JX,-] = F[ X1+ EL XIX< YIE[IU —1]
=E[X1] +E[X1X< Y]EINQQ(G)_I]

Hence, the above expression (9) becomes
LB X1+ EXXCVEING, (0)-11)
_% p(ygg)lHNo.o(e)] {ELC,4(] - EL X, ]} (10)

We know that every terms in the above expression (10) can be observed from sample path

(for %, see the expression (2) ). Since 6 is a scale parameter, E[X,] is

differentiable and

a
Ea[;gfll =K ‘ggl ]=%E[X1] [ see Suri and Zazanis(1988)] an
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Hence, from theorem 1 and assumptions we also see that every terms except E[X[X<Y] in
the expression (10) are differentiable and the derivatives can be obtained from sample path.
Consequently, if we show that E[X|X<Y] is differentiable with respect to 6 and

dE] X|1 X< Y]

40 can be observed from sample path, then the theorem 2 will be proved.
We now show that E[XI|X<Y] is differentiable with respect to 9.

E[XIX< ¥]= mef(adX< Y)dx

_ . 1-G(x)
= | mRxe g s
_ K X{1-G(XON
P(XKY)
P(X<Y)
On the other hand,
dEI XG(X)] _ lim E X()G(X(8)— X(8— 40)G(X(8—4))]
dé 460 46
- 1 X(& X488
= Llaqloﬂ £ G(X(8)+ £ 2(X(8)], (13)
where ¢ is a number between 8-A8 and 0. Since, for all ¢ in [a,b],
D Gx()+ XL g x(ey< XL 4 KBy
and
E[X*(b)1< 0,
by the Lebesgue convergence theorem the above expression (13) becomes
. X(8) X%(&)
El }1}95“0{ £ G(X(8)+ £ g X(N}]
= 8% 60+ X g(x01¢o0 14
Similarly as in the expressions (5) and (6),
dP(X<Y) _ dE[1-G(X)] _ X
a6 = 2 =~ EHe(X)7y] (15)

From the expressions (11) through (15), we see that E[XIX<Y] is differentiable with respect

to 0 and the derivative dE[ XX Y]

40 is given by the following formula.
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JELXIX<Y] _ _dELX1/d0 ___ELX] dP(X<Y)/do
dé P(X<Y) P(X<Y) FHX<KY)

_ _dE[ XG(X)]/d6 | EIXG(X)] dP(X{Y)/dé
P(X<Y) P(X<Y) P(X<Y)

1_EX]_,1_HX] FXgX)]
6 Hx<n T e RXD  KX(Y)

1 EXGX)] 1 _EX%(X] 1 _HXGX)] EXgX)]
6 P(X(Y) 6 PXY) 6 PX{Y) PXY

_1_HX]__ EXGUOl, FXg(0l, 1 EX%(01
6 ' P(X<Y) P(X<(Y) P(X<Y) 8 P(XKY)
_1 B Xe(X)] ,_ 1 _EX’&(X)]
Similarly as in (2), the above expression (16) becomes
1 _Xe(X) 1 X(X)

If the underlying process jumps up at the end of the i-th sojourn time and the i-th state is
greater than zero, then XY, Since those sojourn times X,s are iid, we can estimate all

the terms of the expression (17) by observing the sample path. Hence the theorem 2 is
proved.

4. Concluding Remarks

In this paper, we showed that, under the moderate assumptions, the second derivative of
mean busy cycle with respect to a scale parameter 8 of inter-arrival time distribution exists
and it can be estimated from a single sample path. We also showed similar thing for the
mean number of arrivals during a busy cycle. As we can see from the proofs of theorems in
this paper, these results will be easily extended to the third or higher derivatives.
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