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Bayesian and Empirical Bayesian Prediction Analysis
for a Future Observation
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Abstract

This paper deals with the problems of obtaining some Bayesian and empirical
Bayesian predictive densities and prediction intervals of a future observation X+,
in the Rayleigh distribution. Using an inverse gamma prior distribution, some

predictive densities and prediction intervals are proposed and studied. Also the
behaviors of the proposed results are examined via numerical examples.

1. Introduction

Statistical prediction analysis could provide warranty limits for the future performance of
systems or could be used in situations where a producer compare the performance of both his
product and that of a competitor and wishs to determine the difference in future mean
performance of the products. thus this analysis plays a very important role in reliability
analysis for some lifetime models, quality control and other applicatin areas.

Serveral distributions have been introduced and discussed for this problem with a Bayesian
point of view. Chhikara and Guttman(1982), Nigam and Hamdy(1987), Sinha(1989) and
Upadhyay and Pandey(1989) suggested the Bayesian inference about prediction for inverse
Gaussian, lognormal, Pareto, exponential distributions, respectively. We also deal here with the
prediction analysis based on the parametric empirical Bayesian method. this method was
studied by Efron and Morris(1973) and Morris(1983).

In this paper, we deal with the Bayesian and empirical Bayesian predictive density and
prediction intervals for the future observtion based upon a censored sample observed from the
Rayleigh models.

The probability density function(pdf), denoted by R(oz), is given by

Ax; - X __i
x; 0) = 7 exp ( 5 ), 0<x{o> . (LD
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The properties and application of Rayleigh distribution were discussed by Siddiqui(1962),
Dyer and Whisenand(1973a,b). Sinha and Howlader(1983) obtained the Bayes estimator and
credible intervals for the reliability function.

In Section 2.2, we propose the Bayesian and empirical Bayesian predictive density function
and prediction intervals of a future observation X (r+y based upon the Type Il censored
sample from the distribution with pdf's in (1.1).

In Section 2.3, we provide numerical examples for the proposed equal-tail and most
plausible prediction interval of a future observation with respect to a inverse gamma prior
distribution.

2. Prediction Analysis of a Future Observation

Let X=(X,, - ,X,) withXy < X@ < + - < X be the observed lifetimes

of the first » components to fail in a random sample of 7 components whose lifetimes have
the Rayleigh distribution with probability density function in (1.1) and the survival function is

-_— 2
Fx: o) = exp(~2"7), >0, 0¢< x¢ o, .1

Then the likelihood function is given by

l || x; gx%+(n—r)x2(,)
Liolx) = -7 ’;2, exp |— 52 , (2.2)
020, 0<xiKo0, i=1,2," - - ,m,

Suppose a sample of # components is put on life test and the distribution of their
lifetimes is a Rayleigh and that the lifetimes of the first #» of these to make inferences about

the lifetimes of the remaining »#— ¥ components in the sample. Let X (r+) denote the lifetime

of the (7r+ u)'h component to fail, where v=1,2, - + -+ ,n—#  Then the conditional

predictive density of X(,+, given X=x is

V(n: r)(—ﬂx(r)) _.F(x(r+ v))) . 1T:(-x(r+-y)) nore l}f(-x(r+ y))
Axrenl ox)= o)™ (2.3)
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_ ux(,+,z£":y) g(";’)(—l)j exp(— (n—r—v+i+ Dby —270)

55 L X2 X () -

We consider an inverse gamma prior distribution for ¢ with probability density function
exp(—1/8d° ;
: = . . 24

Combining the likelihood function in (2.2) and an inverse gamma prior density function, the
posterior density of ¢ given X=2x is

__((BZ2+ )BTtV 1
H(Gl X )"' I-(r+a+l/2)2r+a—172 0,2(r+ar+1

2
) exp(——%—&tl), 2,850, 650. (25)

where Z¢ = l; 22+ (n— nxly,

If (2.3) and (2.4) are considered, then the predictive pdf X, is given as follows:

Theorem 2.1. Under the conditional predictive density and an inverse gamma prior, the
predictive density X (,+, given X=x is

H(X(r+u) | x) =2VX (y+1) B( n; ")(r-i- a+_%_)r+a+l/2 26)

X g( u; 1)(— D (BZ2+ 24+ (n—r—v+i+ 1D)B(a%, 4 ) —25,)) ~ et

If an inverse gamma prior is used, then the equal-tail 100(1— % prediction interval
(Cer,Cer) for X (r+» €an be constructed by solving the following equations:

% - ,,(";”)g(”;l)(—l)’(n—r— v+i+1) 7}

X(l——( BZZ+2 )r+a+1/2)

BZ+2+(n—r—v+ i+ 1) B(Cor— 22)

and

= u(n;y)g(—l)j(n—r— v+ji+1) 7!

o}

BZZ+2 r+a+1/2
X( BZ+2+ (n—r— vt j+ 1) B(Cou—x%) )
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The 100(1—#)% most plausible prediction interval (Hg., Hgp) for X (r+y are obtained

by solving simultaneously the followings;

v (n; ,»)g( V; 1)(—1)"(71—7'— v+i+1) 7!

X(1+ (n—r—v+ji+ DAHE — X4) ) e
(BZ*+2)
;. n— S V—l _ j e . -1
V( Uf)g( j)( D'(n—r—v+ji+1)
| X(1+ (n—r— u+j+1)B(HZGU—X2(,)))_('+“+1/2)
(BZ*+2)
=1—-7r
and
; —(r+a+3/2)
S v—1\¢ _ 1\ _ . 1 (n—r—v+j+DE(H: — X%)
HGLJZ-;( ])( D'(n—r—v+j+1) (1+ (/322+2) )
—(r+a+3/2)

(n—r—v+i+ DA HE— X%,) )

= chg(”;l)(—l)j(n—r—-u+1'+l) “1(1'*‘ (BZ2+2)

Now, we consider empirical Bayesian approach of the predictive density of a future
observation X(,.,) for the Rayleigh distribution under the type II censoring.

If a prior for ¢ is an inverse gamma distribution with parameters @ and A in (2.4), then
the posterior density function of» ogiven X=x 1is given in (2.5). Therefore, under the
distribution of a future observation of X, , in (2.3), the Bayesian predictive density function
is given in (2.6). We can estimate the unknown parameters @ and £ for an inverse gamma

prior distribution by using the parametric empirical Bayesian approach.
The likelihood function under the type II censoring is given by

tlj;xi(r(a_'_%))rz r(a+3/2)(1-1(a+__%_)) n—ro (n—(a+1/2)

2 a+5/2 (n—1(a+3/2) 2.7
(r(a)wﬂmg(%)

L(a,Blx) = (ﬂxzz+2)

In order to obtain the maximum likelihood estimators of @ , 8, we must compute the first
partial derivative of log-likelihood function.
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Therefore, the MLE's @ and B of @ and B can be obtained by simultaneously solving.

sl s ) ool 4-3)

a= 2
_n _ X r _1
L (B we) - 5)- o[ ) %)
and (2.8)
r(a+2) r'(a+3) ,n
7‘#‘ + (n—7) T2 + nlog2 — nLa)
Na+3) a+3) Ita)

Slog(Bt+2) + (n—1) log(By+2)
Then the following theorem is obtained.

Theorem 22. For an inverse gamma prior with parameters @ and 8, the empirical

Bayesian predictive density function of X, is given by

H(X(r+u) | x )=2Vx(,+,,)2(n: ’)(r+ B+‘%‘)(EZZ+2) r+a +1/2

X ,g( s 1)( — 1 (B2 +2+ (n—r— v+ i+ DBas n = 24)) ~H D (2.10)

If an inverse gamma prior is used, then the equal-tail 100(1— )% prediction interval
(Cg , Cgp) for X(4+,) can be constructed by solving the following equations:

= "5 ) oD

y (1—( 27+ 9 ) r+E‘+1/2)

BZE 424+ (n—r—v+i+1)B(CEL — %% 1)

and

V(”:V)]; ("‘l)j(n~ r—v+ji+1)7!

EZZ"‘Z r+a +1/2
B+ 2+ (n—r— v+ j+ 1) B(Ciy— *n)
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The 100(1— )% most plausible prediction interval (Hgy, Hgy) for X(,+,) are obtained by

solving simultaneously the followings :

1" V)fg(u;l)(_l)i(”— r—vt+j+1)7!

(n—r—v+j+ D)B(He —2%) ) k@
(RZ:+2)

1+

— V(";’)}g( l’;1)(‘1)"(11—1'— v+i+1) 7!

(n—r—v+j+ DB(HEy— 2%y | He T2
x{1+ 5 )
(RZ2+2)

=1 — r

and
. —(r+a +3/2)

ST \VIES PO (n—r—v+1+l)3(H%L—x2(r>))

HELg( ].)( D (n—r—v+j+1) (1+ 2

—(r+a +3/2)

- L .,
= HEug(u;l)(—l)j(n—-r—v+j+1)_1(1+ (n—» ”‘:gzl_i)g()HZEU x(r)))

3. Numerical Examples

In this section, to predict a future observation X¢,.,), the data were generated artifically

from the Rayleigh model with parameter ® =4 under the Type II censoring. It is assumed
that only the first 14 (thirty percent censoring) ordered failue times are available, and they are
given as follows:

0.5244, 0.5523, 0.7027, 0.8034, 1.2393, 1.7997, 1.8306,
1.9144, 2.5410, 2.6403, 2.7548, 3.0523, 3.4957, 3.8314

Under the data, to see the difference between Bayesian and empirical Bayesian approach in
the equal-tail and the most plausible prediction interval, the 95% equal-tail and 95% most
plausible prediction intervals with respect to an inverse gamma prior IG(1,2) are derived and
are showen in Tablel.
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Tablel : Prediction Interval of X+,

prior X+ w 15 16 17 18
G, 2) M. P. (3.841, 4987) (3.907, 5512) (4.026, 6.144) (4.206, 7.008)
E T (3.899, 5.190) (3.990, 5.741) (4.139, 6.404) (4.354, 7.320)
ep | MP (3.841, 4997) (3907, 5527) (4028, 6.163)  (4.209, 7.034)
E. T. (3.899, 5.202) (3991, 5.758) (4.142, 6.425) (4.358, 7.348)
IG(1,2) : Inverse gamma prior EB. : Empirical Bayesian approach
E.T. : Equal-tail pediction bound M.T. : Most plausible prediction bound
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