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Comparison of Confidence Subsets
for Umbrella Orderingsv

Dong Hee Kim?) and Young Cheol Kim3

Abstract

This paper proposes a distribution-free procedure that obtain confidence subset for
umbrella orderings. We compare the proposed confidence procedure with Pan’s(1996)
confidence procedure.

1. Introduction

There are many practical situations for testing umbrella orderings in biology, agriculture,
economics, etc. As an example, we could suspect that with increasing dose, the response
effect tends to improve, but that after some point tends to mean diminishing the response
effect. An umbrella ordering contains all the unknown peaks. Our aim is to identify the
treatments that correspond to the optimal effects.

Some nonparametric tests for umbrella orderings have been discussed by many authors.
Mack and Wolfe(1981) proposed a distribution-free test for umbrella alternatives by combining
Jonckheere(1954) statistic and a reverse Jonckheere statistic. Simpson and Margolin(1986)
proposed a recursive nonparametric test for dose-response relationship subject to downturns at
high doses. On the other hand, Hettmansperger and Norton(1987) proposed a nonparametric
method based on linear rank statistic and offered a comparison with Mack and Wolfe(1981)
test by umbrella pattern. Shi(1988a,1988b) derived the likelihood ratio test in the normal case
and proposed an optimal rank test which was called a maximin efficient linear rank test. Chen
and Wolfe(1990) proposed a natural generalization of Chacko’s(1963) statistic to obtain a test
for umbrella alternatives when the peak is known. Pan and Wolfe(1996) compared two
different populations with umbrella orderings and developed likelihood ratio tests for testing
whether two groups with umbrella orderings have the same peaks.

We consider a test for the null hypothesis that the treatment effects are all the same and
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the general alternatives that the treatment effects are not all the same or the umbrella
alternatives that the peak is unknown. When a test is statistically significant, ie. the null
hypothesis is rejected, we want to identify the peaks. Pan(1996) constructed a subset of the #
treatments that the subset contains all the unknown optimal treatment level with confidence

level 1—a. This subset is referred to as a "confidence subset”. But it is not considered the
informations of between the treatment at the peak and the other treatments in the Pan(1996)’s
statistic.

We propose a nonparametric distribution-free confidence subset selection procedure using the
informations of between the treatment at the peak and the other treatments. The statistic of
this type is simple and its distributional properties are easily derived.

2. Notations and Statistics

Let X =(Xg,,Xu),i=1,-+,1 be ! independent random samples from an absolutely
continuous distribution function F(x— B;) where F(0)=1/2. Assume that the location
parameters B3=(f;,***,8,) satisfy an umbrella ordering B <---<f,>-->f, for some

unknown peak p< {1,-*+,¢}. Also assume that an umbrella ordering have at least one peak.
Let P(BQ)={pe{l, -, t}): fi<---<B,2--=>8,} be the set of all unknown peaks of an

umbrella ordering 4. Let R ; be the rank of X ; among all the observations and let R be the
rank vector of all R ; Denote a confidence subset by S(R). We find S(R) of all the

treatment levels {1,:*-,#} such that S(R) contains all the unknown peak in P(f8) with
confidence level 1—a.

To construct a confidence subset S(R) for all the unknown peaks, for a fixed p(=1,, 9,
Pan(1996) considered the parameter and the corresponding U-statistic

7= gPr{Xi(Xi+1}+ g’Pr{X‘.H(X‘.}

and

Up( le...’ Xt)= El U(Xi, Xi+l) + il U(XH-I’ X‘)

=1 LT RN i=p nian;

n; n;
where L X; X;)= 21 ZIZP'(X jo;— X ia;) is the Mann-Whitney counting form between the

=
1th and jth samples. As mentioned earlier, Pan’s U-statistic is not including the informations
among the pth sample and the other except (p—1)th and (p+1)th samples. Hence we
propose the U-statistic that consider this informations.

For a fixed p(=1, -, ), we consider the parameter d; that is an estimable parameter of
degree (1,---,1)
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6p= . . Pr{X,-(X,,}.

=1, #p

An appropriate symmetric kernel is
hp(Xu s “‘.th) = = #pw'(Xp"X.')
where @(x)=1 if x>0 and 0 otherwise. Therefore, the corresponding U-statistic is
1 n n
U Xy XD = b 33 e 30 (X g, X 10)
i=T i+p nn,

where U( X; X,) is the Mann-Whitney counting form between the ith sample and pth
sample. We use the statistics (Uj, -+, U,) to estimate P{ 8) that is the set of all unknown
peaks of an umbrella ordering 5. See Pan(1996) for a details.

Under the null hypothesis Hy: fi=--=48;, 6, =-+=08=(¢t—1)/2.The null variance of
U, for p=1,--,11is
X X = X, X X;, X
oy (Up) = i=$i¢p Vm{LL—_L)]—Fz i=2zl'*lz i=i§ j#Cov Al o) QR XD

nmn, nn, ’ nm,

_ 1.1 1 oy 1
= f=$i*ﬁ[ B Ty + Ty | T (- DD

Theorem. Let N= gln,. Under Hy, if #n/N—o2A, 0<{A;{1 as N-—oo, then

VN(U,— (t—1)/2)/ 6, U,) is asymptotically standard normal distributed.
Proof. It can be shown by U-statistic theorem and Slutsky’s theorem.

3. Confidence Subset and Example

Let ¢,={(B,",B) € R": i<:--<8,2-->8,}. Let P, (U| @,) be the isotonic regression
of a vector U=(Uy,,U)E R onto the ¢, with respect to nonnegative weights
w=(w,,,w,) and let w;=1/03(U;) for i=1,-,1. The confidence subset S(R) for the
unknown peaks P(f) of an umbrella ordering 5 is

S(R)={ie {1, 8: | U=PLU| o)l 4=cy,
where ¢, is critical point such that
Pry {| U-P(U| @)l 2<c; i=1,,t}=1—a.

Exact critical point is obtained by exhausting all the possible permutations of the rank vector
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Table 1. Critical points c¢;= ¢ for balanced designs ;=

(The values in parentheses are a-values close to 0.01, 0.05 or 0.1)

t=3 t=4 t=5 t=6
n=1 3.733(0.75) 7.083(0.0083) 10.641(0.01)
5.056(0.05) 8.443(0.05)
7.029(0.097)

n=2 5.571(0.0667)  8.222(0.0095) 12.156(0.01)
5.250(0.1778)  7.630(0.055) 9.477(0.05)
5.143(0.2) 7.185(0.1) 8.694(0.1)

n=3 9.633(0.01) 11.08(0.01)
8.133(0.046)  8.99(0.05)
6.533(0.094)  7.86(0.1)

R and computing the squared distance between the observed vector U and the ¢, for each
permutation. Table 1 gives critical values of ¢;="‘*=c¢;= ¢ for a balanced design, = 3(1)6
and z#=1(1)3. This constant ¢ is determined by

Py {max ;_;.., | U-PU| @) | %<c}=1—a.
Then the corresponding confidence subset is
S(RYy={ic{l,",8): | U=P(U| @) | 4<c}.
Pan(1996) proved that the confidence subset S(R) is distribution-free and
PAP(BHSS(R)})=1—a for any umbrella ordering S and any continuous distribution
function F(x).

For c¢;=++=c¢;=c¢, we can reject the null hypothesis if

max =1, | U= P(U| @) | ?0> &

Table 2. Artificial data 1

n ¢ 1 2 3 4 5

1 860 990 100 910 490
990 104 107 99 910

Table 3. Artificial data II

nt 1 2 3 4 5

1 990 104 107 990 910
101 113 114 106 930
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Table 4. Artificial data III

n™~¢ 1 2 3 4 5

1 990 104 107 590 410
101 113 114 760 530

where the critical value ¢ is the upper a percentile of the null distribution of
max ;=i...| U—=P,(U| @) %. To compare the procedure using the proposed U-statistic
with Pan’s procedure, as an example, we consider the artificial data for =5 and n=2.

We computed the distances Dy and Dg, where Dy and Dg are the distances

(NWU-PLUl @)%, -, lU-P(U| @) %) for Pan’s procedure and the proposed
procedure, respectively. From Pan’s results, the critical values for @=0.103, 0.053 are 9.00
and 11.81, respectively. From Table 1, we obtain that the critical values for @¢=0.1, 0.05 are
8.694 and 9.477, respectively. In artificial data I, we conclude that 90% confidence subset have
the peak among treatments 1 to 5 for the both procedures. Also, in artificial data II, we
conclude that 90% confidence subset have the peak among treatments 1 to 4 for the both
procedures. In artificial data III, 95% confidence subset using Pan’s results have the peak
among treatments 1 to 5 but 95% confidence subset using our results have the peak among

treatments 1 to 4. We conclude with 95% confidence subset that our procedure is more
informative than Pan’s procedure. But our procedure may be not always more informative.

Table 5. The D and Dg for artificial data I, II and III

Dy | 3375 0375 0000 1500 7.125
Dy | 4227 0545 0000 3455 7.909
Dr | 5063 0375 0.000 1500 9.600
Dg | 3591 0307 0000 2227 87%
Dr | 5063 0375 0000 1500 9.600
Dk | 1773 0136 0000 4.682 10.50

1
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