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Graphical Methods for Influence Diagnostics

Dae-Heung Jangl)

Abstract

Unusual observations can greatly influence the results of least squares estimation. I
propose graphical methods which can detect the influential observations.

1. Introduction

We occasionally find that small data points exert a great influence on the fitted regression
model. These observations are regarded as influential if their omission from the data result in
substantial changes to important features of an analysis. Thus, many numerical measures of
influence have been proposed(See Belsely, Kuh and Welsh(1980) and Cook and Weisberg(1982,
1994).). There are hat diagonals, Mahalanobis distance, DFBETAS, Cook’s distance, DFFITS,
COVRATIO, FVARATIO among numerical measures of influence. These measures almost
consider both the location of the data points and the response variable in measuring influence.
Cook and Weisberg(1989) and Hocking(1996) show graphical methods for identifying unusual
observations, namely, added-variable plot and principal component plot, respectively. Using
singular value decomposition and biplot, I propose graphical methods for detecting the
influential observations.

2. Singular value decomposition and biplot

The regression model can be written as
y=XfB+¢
where ¥=(¥,,¥3,***,¥,) is the vector of observed responses, X is the #Xp model matrix,
4 is the the pXx1 vector of parameters which appear in the chosen model, £ is the number
of parameters in the model, and &= (e}, ey,**,e,)" is the vector of random errors associated
with x.
By singular value decomposition, 72X model matrix X is presented as a product of three
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matrices as follows;
X=U02V"
where U is a 7#X7 matrix which columns are orthonormal eigenvectors of XX', V is a
pxr matrix which columns are orthonormal eigenvectors of X'X, and X is a diagonal
matrix of ordered singular values o¢;203>:--20,>0. Here, 7 is the rank of X. Let X _;
denote the (#—1)X p reduced model matrix with the ith observation eliminated. Then, by
singular value decomposition, (7 —1) X p reduced model matrix X _, is presented as
X_=U_,3_,V_;

where U._, is a (#—1)x» matrix which columns are orthonormal eigenvectors of
X _ X _/, V_;is a pxr matrix which columns are orthonormal eigenvectors of X _;/X _;
and X _; is a diagonal matrix of ordered singular values o0, _;26;_ ;2 20,_0. I

propose the singular values plot as a graphical method for detecting the influential
observations. The singular values plot is the plot of singular values ¢; and o;_;(j=1,2,--,

v;1=1,2,-*,n) against eliminated observation. With this plot, we can find the influential
observations. If there is the large change of singular values in singular value decomposition
of X _, compared with singular values of X, we can consider this observation as the

influential observation. But, the defect of this plot is that we can not detect the influential
observations when there is the masking effect in dataset.

The biplot is a graphical display of a data matrix by means of two sets of vectors, the
rows and columns of any matrix whose rank is 2. The biplot which is devised by
Gabriel(1971), has been studied by many researchers(See Gower and Hand(1996).).

The rank-two approximation X' to X is
X'=0, 4 0" +06u v,
where u, and u, are the first two columns of U, and ;" and ;" are the first two

rows of V’. To obtain a biplot, it is necessary to write X' as the product of two matrices
J. K as follows ;

X'=JK
where J=[0, u,,0y u;] and K=[ w,, v;]. Then, for the biplot the row markers Jj,, 7,
“**, I are the » rows of )] and the column markers &), k,'**, %, are the p rows of K.

If we construct a biplot in which the only row markers are plotted, we can detect the
influential observations in X through the pattern of the row markers of this biplot. If any
observation is isolated from data points group, we can consider this observation as the
influential observation. With this biplot, we can detect the influential observations though there
is the masking effect in dataset.

Many numerical measures of influence almost consider both the location of the data points
and the response variable in measuring influence. But, the singular values plot and the biplot
consider only the location of the data points.
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3. Examples

Our first example is taken from Myers(1986). This dataset 1 consists of 25 observations
with 7 explanatory variables and one response variablee We can find the influential
observations with the singular values plot. Figure 1 shows the singular values plot for dataset
1. In Figure 1, ‘0’ on the x-axis of singular values plot, means no elimination of observations
in the model matrix X. From Figure 1, We can find that the 23th and the 24th observations
make the large change of singular values. There are the large changes of first singular value
in the 24th observation and 2nd, 3rd, and 4th singular values in the 23th observation. Figure 2
shows the biplot for dataset 2. From Figure 2, we can find that the 23th and the 24th
observations are the isolated observations from data points group, namely, the influential
observations.

Table 1 shows several numerical measures of influence for the comparison with singular
values plot and the biplot. We can find that the 23th and the 24th observations are the
influential observations.

Table 1. Several numerical measures of influence in dataset 1

observation h; DFFITS Cook’s D COVRATIO
1 0.257 -0.043 0.000 2.181
2 0.161 -0.032 0.000 1.931
3 0.161 -0.202 0.005 1.944
4 0.163 -0.078 0.001 1.911
5 0.148 -0.175 0.004 1.745
6 0.159 -0.248 0.008 1.644
7 0.183 0.356 0.016 1.504
8 0.359 -0.353 0.016 2.269
9 0.281 0.203 0.005 2.143
10 0.130 0.035 0.000 1.858
11 0.124 0.585 0.039 0.603
12 0.202 0.223 0.007 1.848
13 0.080 -0.054 0.000 1.737
14 0.097 -0.007 0.000 1.798
15 0.558 -2.828 0.761 0.254
16 0.402 -0.044 0.000 2.714
17 0.368 -1.016 0.123 1.110
18 0.447 1.129 0.154 1.382
19 0.087 0.311 0.012 1.087
20 0.366 -2.179 0.417 0.093
21 0.070 0.565 0.034 0.269
22 0.785 -3.072 1.079 2.290
23 0.989 -48.518 115.041 0.047
24 0.876 8.537 5.889 0.246
25 0.547 0.472 0.029 3.269
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FIGURE 1. SINGULAR VALUES PLOT FOR THE DATASET 1
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Our second example is taken from Hocking and Pendleton(1983). This dataset 2 consists of
27 observations with 3 explanatory variables and one response variable. Table 2 shows several
numerical measures of influence. We doubt that the 24th and the 27th observations are the
influential observations. But, when the 24th and 27th observations are deleted in diagnostics,
respectively, i.e. we consider only the 26 observations for diagnostics, we can find that the
24th and the 27th observations are the influential observations, respectively. Thus, we conclude
that the 24th and the 27th observations are influential if the other observation is not included
in dataset, but this effect is masked when both are included in dataset. Table 3 shows this
fact. The masking is especially dramatic in Cook’s distance.

Table 2. Several numerical measures of influence in dataset 2

observation h,, DFFITS Cook’s D COVRATIO
1 0.2226 -0.4202 0.045 1.3759
2 0.0921 0.1784 0.008 1.2434
3 0.0401 0.0156 0.000 1.2432
4 0.0402 -0.0788 0.002 1.2116
5 0.0504 -0.1022 0.003 1.2140
6 0.1139 0.3865 0.037 1.0974
7 0.0662 -0.0728 0.001 1.2621
8 0.2576 0.1736 0.008 1.5839
9 0.1077 0.0624 0.001 1.3309
10 0.1529 ~-0.1287 0.004 1.3869
11 0.1668 -0.4974 0.061 1.1522
12 0.0549 -0.2704 0.018 1.0117
13 0.1709 -0.3020 0.023 1.3305
14 0.1651 -0.0659 0.001 1.4252
15 0.1077 0.0022 0.000 1.3387
16 - 0.1772 -0.1386 0.005 1.4285
17 0.0387 1.3886 0.159 0.0122
18 0.2309 -0.0620 0.001 1.5496
19 0.1540 -0.5389 0.071 1.0672
20 0.0775 0.2384 0.014 1.1471
21 0.1067 0.0931 0.002 1.3198
22 0.0538 0.0732 0.001 1.2410
23 0.0473 -0.0796 0.002 1.2252
24 0.4674 0.0387 0.000 2.2424
25 0.1410 0.0927 0.002 1.3776
26 0.0940 -0.2332 0.014 1.1999

27 0.6024 -0.1297 0.004 2.9988
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Table 3. Diagnostics for the deleted dataset 2

observations (deleted observation) h,, Cook’s D
24 (27) 097 317
27 (24) 0.98 4.38

With the biplot, we can overcome the masking effect in influential observations. Figure 3
shows the biplot for dataset 2. From Figure 3, we can find that the 24th and the 27th

observations are the isolated observations from data points group, namely, the influential
observations.
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4. Conclusion

I propose graphical methods for detecting the influential observations. We can detect the
influential observations through the singular values plot and the biplot.
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