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Autocorrelations of Linear Processes 1)
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Abstract

This paper considers the problem of sequential fixed accuracy confidence set procedure
of the autocorrelations of stationary linear processes. The proposed procedure for
fixed-width confidence set is shown to be both asymptotically consistent and
asymptotically efficient as the size of the width approaches zero.

1. Introduction

Let { X,:teZ}, Z={0, 1, +2, .}, be a stationary linear process defined on a probability
space ( 2, F,P) of the form:

X'= Z}aié}_i, tEZ, (1.1)

where the real sequence { @;} satisfies the absolute summablity condition 22’.0 la;| < oo, and
{e,:t=0, £1,...} are unobservable iid random variables with Ee;= (0 and E&}* ( © for some

@ > 1. The linear processes include a general class of stationary processes covering ARMA
(autoregressive and moving average) and infinite order autoregressive models. Applications to
economics, engineering and physical sciences are broad. Moreover, most of standard texts like
Fuller (1976) and Brockwell and Davis (1990) put the linear process in the central position for
asymptotic studies.

In this paper we are concerned with the problem of constructing cofidence set for the
autocorrelations of linear processes. The topic has long been of primary inberes!: among
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researchers for its importance. For c¢xample, accurate estimation of autocorrelations is very
important in selecting an appropriate ARMA model (cf. Box and Jenkins, 1976). Here, we will
particularly consider the scquential method initiated by Robbins (1959).

Compare to iid cases, the literature on sequential estimation in time series emerged recently.
See Fakhre-Zakeri and l.ee (1992, 1993), Lee (1994) and the papers cited therein. Lee (1996)
considered the sequetial point estimation problem on the autocorrelations of the linear process in
(1.1). Some preliminary results in Lee (1996) are also useful in our setting (cf. Lemmas 3.1
below). Particularly the random central limit theorem for the autocorrelation vector, which is
established in the Appendix of Lee (1996), plays an important role.

In Section 2, we propose a sequential procedure to deal with fixed accuracy confidence set
with prescribed coverage probability. The proofs are given in Section 3.

2. Main results

Let X,,...,X, be n consecutive observations following the model (1.1) and denote by ¥(%)

and (k) the autocovariance and autocorrelation at lag £, respectively. As estimates of ¥(k)
and p(k), we use the sample autocovariances and autocorrelations

?n(k)=n_1gX,X,+k , 0<k<n-1, 21

and

00 (B) = 7,(B) ] 7,(0), (2.2)

respectively. It is well known that those random sequences are strongly consistent estimates of
true parameters when the indices % are fixed Moreover, it is known that if
2,.(PD=C01,..., 02,(») and o= (p(1),...,0(n)", r=12,..., then under the

.. 4
moment condition Ee] (o0, as n — oo,

2 0,(D—0(») = (V,,....Y,)’ 2.3)

where

Yy= 2 olk+i)+o(k—i)—20(R0()) Z, e

with Z, being iid N(0,1) random variables (see Brockwell and Davis, 1990, Theorem 7.2.1, P.
221). The following procedures will heavily rely on the fact (2.3).
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Suppose that one wishes to construct a confidence set for o(#) in »-dimensional Euclidean
space R” with the maximum diameter 2d (d> (), based on 7 observations, of which the
probability of coverage is at least equal to 1—a (0<a<1) as d goes to zero. In view of (2.3)
we propose an ellipsoidal confidence region for the unknown po(7) at sample size #»:

R,={0€R (8~ 0.(n) H(@~ 2,(M) <dApn(H)},

where H is a known 7 x 7 positive definite matrix and Apin(A) (A (A)) denotes the
smallest (largest) eigenvalue of A. Then R, defines an ellipsoid with maximum axis 2d and

choice of d and H determines the size and shape of the confidence set, respectively.

Let I’ denote the #» X » matrix with the (&, /)-th entry being
w(k, )= lz{ o(k+ 1)+ plk— D) —20(R)p(D N p(I+ )+ p(I— 1) —20(Dp(D)}, - (25)

and denote by x2(1—a) the upper 1—a point of a chi-square distribution with # degree of

freedom. Set L=x2(1—a)Ank(H)A m (H). Following the arguments as in Srivastava (1967),
page 136, we have that

PoneR)2P{ (0 ,—o(N) T 2N —2(N)<nd® AL (DA gin (H) A i (D).
By (2.3) the right hand side of the above inequality goes to 1—a provided that

n=d LAy (D) (2.6)
since we have
22 2,(N»—0(») = N(Q,T) as n— o, Q7N

Now, letting T, be the random matrices with the (%, !)-th entry being
o~ h ~ ”~ ~ ”~
0n (k1) = 20 Bu(k+1) + By (k—=1)=2 B, (B) Py(i))
x{ paU+i)+ p,(1—i)—=2 p,(1) 5,(8)}, (2.8)

where h, is a sequence of positive integers such that

hy— ©, hy=0(n"), B e (0, (e—1)/2a). 2.9

Define the stopping rule, in analogy of (2.6), as follows :
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Ti=infl {n>my;n 2 Ld *AQuu(T)+n"D}, 1> 0. 210

Here my is initial size and 727 * is the delay factor as seen in Chow and Yu (1981). Later, we
will show that P(e(n)€Rr,) 2 1—aasd— 0.

The following is the main theorem asserted by the performance of the sequential methods
described above.

Theorem 1. (Fixed accuracy confidence set with prescribed coverage probability) As d — 0,

Tk =0 as. (2.11)
E|T;/l—11 >0 a.s. (2.12)
T (B 1,—0(n) — N, I (2.13)
P(p(NnERy) 21—a, (2149
where ky=[Ld 2 A (D) ]+1.
3. Proofs

We start this section with two lemmas which can be found in Lee (1996), Lemma 45 and
Theorem A.l in the Appendix.

Lemma 3.1. The following holds under the condition of Theorem 1:

as n — oo,

lsr;e‘ixzh 2 (B — o(B) |l 0= O (n~ 1),

where for any random variable Z, ||Z||,,=(EZ?*)?*,

Lemma 3.2. Let { N,} be a sequence of positive random variables such that N,/zn — N

as m — o in probability, where N is a positive random variable with P(N ¢ ©©)=1. Then,
as n — oo,

N, 0,(N— 0(n) = N(0,D).
Lemma 3.3. Under the same conditions of Theorem 1,

PUAma(F)) = Ap(D) > &)= 0(n""h2%). 3.1)
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Proof. Let
(ki) = o(k+i)+ o(k—i)—20(k)p(i),

D)= 0,(k+i)— 0,(k—1)—2 0,(B) 0,(i).
Note that

I

Wk, 1)~ w(k, 1) |
h
< 20 Bk i) = @k D) | X1 B DI +190k D x| Ba(L, D)= $(1, 1) 1)

+ 2 16k $(LD)]
= L+, (say).

I, goes to 0 since 25 j=,lp(7)] < ©© due to the abosolute summability condition on { a;}). On
the other hand, for all sufficiently large n,

1l 2o < 8hay J025, W 04 ()= 6 ll20= OChyn™"")
by Lemma 3.1. Thus, for any &> 0,

max A~ _ 2a¢, —a
ISk,ISrPH w,(k,)—w(k, )| > 8)=0h1n""),

which is 0(1) by (2.9).
Consequently, for all € > 0, 8> 0, by (3.2),

P Amax (T ) = A ()| 2 8)
< PUAmm(Tn) = AT 2 8), | w, (b, ) —w(k, 1) < @ for all k1)
+ §P(| . (b, D)—wk D >8)
= p(6,8)+0(),

where p(0,8) are the positive real numbers such that lim ,_, p(8,8) =0. This asserts (3.1).

Lemma 3.4. The family { T;/ky) is uniformly integrable.

Proof. let & > 0 and /;,= Ld " (Apax (I +28)+1. Then for n ) /4 and sufficiently large
n such that n % ¢ d,
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P(K,>n) < PILd *(Apu (T +n %) = 0]
< PILd 2 (A (D) +07 %) = 1]

= 7, (say),

Then 7y, ,7 = 1,are independent of &> 0 and summable by Lemma 3.3. Now the assertion
follows from Lemma 4.4 of Woodroofe (1982).

Proof of Theorem 1. By Lemma 3.3 and (2.9), for any 8 > 0, we have
2 PUA s (T) =R (T) 1 > 8) = 2, 0(n™"2%) (oo,

50 that Ay (I'y) = Ape (I')  @.5. as n — . Then it follows from the definition of 7T that

Ts/ky — 1 a.s., which in turn implies (212) and (2.13) using Lemmas 3.4 and 3.2,
respectively. (2.14) is an immediate result of (2.11) and (2.6).
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