A Note on a Result of Yu. V. Prokhorov in General Banach Spaces

  • Dug Hun Hong (School of Mechanical and Automotive Engineering, Catholic University of Taegu-Hyosung, Kyungbuk 712-702 Korea)
  • Published : 1997.04.01

Abstract

We prove a conjecture of Yu. V. Prokhorov in general Banach Spaces ; let ($X_n$, n$\geq$1} be a sequence of independent identically and symmetrically distributed Banach valued random variables, then the relation $\mid$$\mid$$S_n$$\mid$$\mid$/$b_n$ -> 1 a.s. cannot hold for any choice of constants $b_n$.

Keywords

References

  1. Proceeding of National Academy of Science U. S. A. v.47 On sums of independent random variables with infinite moments and "fair" games Chow, Y. S.;Robbins, H.
  2. A course in probability theoty, (2nd ed.) Chung, K. L.
  3. Zeitschrift fur Wahscheinlichkeitscheorie und Verwandte Gebiete v.55 An elementary proof of the strong law of large numbers Etemadi, N.
  4. Theory of Probability and its Application v.31 On a conjecture of Yu. V. Prokhorov Martikainen, A.I.
  5. Theory of Probability and its Application v.28 On sums of random vectors with values in Hilbert space Prokhorov, Yu. V.