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Abstract

Uncertainty, which arises when little information is revealed, can
be represented by a non-additive probability, while risk is described
by an additive one. This paper demonstrates that in the presence of
uncertainty a steady state probability exists, which implies that we
can estimate an average over a long period even under uncertainty. It
is also shown that the steady state probability may not be unique in
the presence of uncertainty. This implies that the estimated average
under uncertainty is less accurate than under risk.
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1. INTRODUCTION

In this paper, uncertainty is defined as a situation where a probability
distribution is not well defined. Uncertainty can be represented by a non-
additive probability. Non-additive probability is sometimes called capacity.
A transition probabilities matrix is uncertain if at least one one-time unit
conditional probability is not additive, while it is risky otherwise. Because
the model in this paper assumes the possibility of non-additivity, it is gener-
alization of a traditional additive case.

I demonstrate that in the presence of uncertainty a steady state proba-
bility exists, however the steady state probability may not be unique. The
existence suggests that we can estimate an average over a long period even
under uncertainty. However, the estimated average may be less accurate than
under risk due to non-uniqueness.

In the classical probability theory, a probability is assumed to be additive.
Savage(1954) developed the expected utility theory under the assumption
that an individual faces an additive probability distribution. And in most
literature, an uninformed decision maker who does not know the true state is
assumed to have a single additive probability. This approach, however, does
not distinguish between the situation where an individual has enough relevant
information and the situation of little information. That is, the approach does
not include the fact that people are more reluctant to choose a lottery when
little information is reveled.

A distribution between risk and uncertainty was made by Knight(1921).
A random variable is risky if its distribution is known, while it is uncertain if
the distribution is unknown. He argued that uncertainty arises when decision
maker’s subjective opinions, without enough information, mainly determine
the outcome. The Ellsberg paradox(1961) showed that an individual’s behav-
ior under uncertainty is different from under risk, and he is more reluctant to
choose an uncertain asset than a risky one.

There are two main approaches to describe individual’s behavior under
uncertainty, the multiple priors method and the non-additive probability
method. The former approach is developed by Bewley(1986) and Gilboa and
Schmeidler(1989). The latter approach to uncertainty is elaborated by Demp-
ster(1968), Shafer(1976), Schmeidler(1989), Gilboa(1987) and Wakker(1989).
Gilboa and Schmeidler(1991) demonstrated that a preference ordering in the
multiple priors approach can be preserved in the latter approach under some
reasonable conditions. Yoo(1991) showed that there is dynamic inconsistency
in the presence of uncertainty, i.e., the iterative law of expectation does not
hold under uncertainty.
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2. APPLICATIONS

There are many arguments which support the admission of uncertainty.
Most important of these are when (i) a group of individuals are involved
in decision making, (ii) there is no previous experience or total absence of
relevant information(For more example, see Walley(1991)). T will give a few
simple examples in this section. Consider a case where a group of individuals
are involved in decision making. A group of individuals do not usually have
deterministic beliefs even when each individual does, because of disagreement
among them. Suppose that there are two individuals and the decision is
finalized only when both agree. Suppose also that the present status gives
utility of 140, and that the outcomes for the new alternative is 100 or 200.
The probabilities assessed are 0.3 and 0.7 for the first decision maker, and
0.8 and 0.2 for the second one. Then the expected uncertainties for the new
alternative are 170 and 120.

Therefore, the group will not take the new alternative because one dis-
agrees to take it. In this case it is better to say that the appropriate expected
utility for the second alternative is 120(=Min {170,120}). This utility level
can be easily calculated using the non-additive approach by taking low proba-
bilities 0.3 and 0.2(the non-additive probability approach yields the expected
utility level (0.2 x 200) 4 {(1 — 0.2) x 100} = 120 using the Choquet integra-
tion which will be defined later). We know that the low probabilities are not
additive.

Uncertainty also applies when a decision maker has little experiences.
Suppose a decision maker assesses the probability that a particular thumbtack
will land pin-up on a specific toss. If he/she has no previous experience with
this or similar thumbtacks, he/she may not estimate a unique probability.
Instead, he/she can assess a range of probabilities for an event. Thus there
exists lower and upper probabilities for the event. The lower probabilities
which are relevant to decision making may not be additive. Note that the
upper and lower probabilities will tend to converge as he/she accumulates
information about its propensity to fall pin-up.

3. MODEL

Let (2 be a nonempty finite set of states of nature, Q = {1,2,... .. V}. Let

”.(1") (B) be the possibly non-additive conditional probability that the random
variables X, starting in event A, will be in event B after exactly n time

It

-1
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units. For notational convergence, we will drop 1 if n = 1. The space of
one time unit conditional probabilities and initial probabilities is v = {v :
29 > Rjv(®) =0, v(Q) =1, A C B = v(4) < v(B), 4,B C Q).

is also assumed that v(4 U B) + v(4 N B) > v(A4) + v(B)(This condition
is called convexity). Note that additivity is not assumed in v. Let H") be
the square transition probabilities matrix of v(")(B) € v, where both the row
events and column events are disjoint and exhaustive. Let q,, ( 4) denote the
value corresponding to event 4 in row and event B in column and let q " ) be
a function taking values ¢}’ (4), where A is the row event of H(").

Since the probability may not be additive, we cannot use a traditional
integral. To integrate with respect to a possibly non-additive probability, we
use the Choquet integral(Choquet(1953)). The Choquet integral with respect

to v, is defined as follows(note that the first element in the right-hand-side

() s

equation is 0 in this paper since ¢;,’ is non-negative.) :

B8] = ~ [ -u(ls:a () > a})] da
[T oills :4(s) 2 a})] da

We now turn to define a Chapman-Kolmogorov equation in the case of
possibly non-additive probabilities. It is defined as :

o0B) = [T o a8 (s) 2 a})] da

The Chapman-Kolmogorov equation says that v‘({') (B) is the expectation

of g, ("=1) with respect to the probability v,(-). Notice first that if a prob-
ability is additive, the Chapman-Kolmogorov equation defined in thlS pa-
per yields the same result as the traditional one, i.e., [;° vi({s : q )( ) >
al)] da. = v (k)gl) (k) = T, va(k)v")(B), where k is the kth column
event of a row event A. Thus the Chapman-Kolmogorov equation defined
in this paper is generalized of the traditional one. Notice second that if v&")
is strictly monotonic and non-additive, v{'*" is possibly non-additive be-
cause E,, [gs] # E.,lqr] + F., [gr] for a non-additive probability v, and E,
F,B=FEUF, ENF = 0. Notice third that the traditional Chapman-
Kolmogorov equation is not adequate in the presence of uncertainty since
all the steady-state probabilities are 0 under non-additivity. The intuition
behind is as follows. vf;" (B) is the weighted average of a random variables
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qf,"“” . If we use a traditional equation under non-additivity, the sum of the
weights is less than 1, which makes relatively smaller the m time unit condi-
tional probability for a larger m. If we use it in a Choquet fashion, however,
the sum of the weights is always 1. The following example demonstrates this
point.

Example. Suppose the transition probabilities matrix is

1 .6
= (%)
Using the traditional equation Y-, cq; vi(k)vi(j) yields
43 .18
21 46

And, lim, o Siequi(k)o" "V (j) =0, for 4,5 = 1, 2.
However, using the definition in this paper,

H® — ( 46 .24 )

.22 48
where 0.46 = (0.6)(0.7) + (1 — 0.6)(0.1).
And
.24 .38
3) —
o= (55 %)
.33 .30
“4) —
HY = ( 27 .36)
.30 .31
(5) —
HY = ( .29 .33)
29 .32
8
H™ = ( 29 .32 )

By iteration,

29 .32
(00)
H= = ( 29 .32 )
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4. EXISTENCE OF A STEADY-STATE PROBABILITY
UNDER NON-ADDITIVITY

The following theorem demonstrates that exists a steady-state probability
for a finite Markov chain if the transition probability is strictly monotonic.
v4(+) is strictly monotonic if B C (proper subset) C, B, C C 2, implies
v4(B) < v4(C). Note that without uncertainty a steady-state probability
exists if the transition probability is strictly positive.

Theorem. Let H be a (possibly non-additive) transition probabilities ma-
trix. If Q is finite and v;(-) is strictly monotonic for : € €2, then there exists
a (possibly non-additive) probability = on Q such that

() = lim, 0ol (5)

Proof. Define

2 (k) = vi({s: ¢ (s) 2 ¢ (B)}) — ({5 : ¢ (5) > ¢ (K)}), i,j k€.

Notice that 3=, cq 2;, >(k) =1 and

o) = [Tulls " (s) 2 ahda = 30 =5V o V).

ke

Define Z = {v;(AUK) — v(A4) : A C Q—k, ik € Q}. Then z'(k) € Z,
n=1,2,..., and since Z is finite and v;(- ) is strictly monotonic, there exists
6 such that § = min, ;req{Z} > 0.
Fix arbitrary ¢, h and j.
Define Q(n) = {k € Q: 2 (k) > ,E';>(k)} and S(n) = {k € Q: 2" (k)
2y (k)}.
Because ycq 2 (k) = Tpen 25 (k) = 1,

IA

T 2w+ S k= Y Ak Y AT %)

keQ@(n) keS(n) k€Q(n) keS(n)

and
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PR -k = - S (k) - 2 () (4.1)

ke@(n) keS(n)

And also,

3 (k) - 20 (k)]

ke@(n)

=1- Y k) - 3 k) <1~ Ne. (4.2)

keS(n) keQ(n)

Let M; () and m ) be the maximum and minimum of the elements of the

jth column in H™)
Then

(1) ) : '
M;”—m;?<1-(N-1§-6<1-Ns. (4.3)_

n+1 n+l),.
o V() — o ’u)

i h

— Z z(n (n . Z Z’(:; (n)( )

ke kel
= Y [z0(k) z,‘,'; (8)]o"(5)
ke L
= Y PE - ERIG) + S k) - z,.,’<k)1 ) (5)
ke@(n) keS(n)
< 3 EPE) - EIM + 3 DR - 2 ()m
keQ(n) keS(n)
o (n) k (n) k M<(") . (7z) b 4.1
- Z [zz] ( ) zhg( )][ 7 m] ] Yy ( . )
keQ(n) , o
< (MM —m1- N8| by (4.2) (4.4)

(4.3) and (4.4) yields

o (G) = oV () < [1 - N, (4.5)

It is easy to see that M; ™) and m( ") are weakly decreasmg(M is weakly

decreasing(increasing) if M, ) < (>)m(") ) and weakly increasing functions,

(

respectively. M j( ") and m; are bounded above by 1 and below by 0, and
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therefore both have the same limit, say n(j). Since m_&”) < n(j) < ]VIJ.("’),
m'") — MJ.(") < ") = 7)) < M}” — 1n5"'), which, together with (4.5),

7
completes the proof.

To calculate F,(X) for a random variable X, we also need n(A), 4 C
Q. Let v(-) be the initial probability, and let v(B|A) be the conditional
probability of the event B given A. There are two updating rules - (i)
Bayes’ rule, (ii) Dempster-Shafer rule.

(i) Bayes’ rule : v(B|A) =v(A N B)/v(A) for all A # .

(ii) Dempster-Shafer rule : v(BJA) = [v(B U A°) — v(4")]/[1 — v(A4")] for
all 4 #£ .

The former is commonly used in the case of additivity. The latter is a
pessimistic decision rule assuming that all the unoccurred events are the best

possible ones. The Dempster-Shafer rule is usually used since decision makers
are in general averse to uncertainty.

Corollary. Under the same conditions in the above theorem with anyone
of two updating rules, there exists a (possibly non-additive) probability = on
Q such that

7n(B) = lim,,_.oovf;')(B), A,B Cq.
Proof. v,(B), 4,B C €, is defined as

01(B) = [ v({s s au(s) 2 all4)da. (4.6)

Using the same method in the proof of the above theorem completes the
proof.

Without uncertainty, it is well known that =(-) is additive and unique,
and = (-) satisfies

7() = [ 7l{s: 4;(s) 2 a})de

where 7 is the steady-state probability. In the presence of uncertainty, how-
ever, () does not hold the above properties.

Therefore E,(X) may not be unique. The following example shows that
7(-) may not be additive and unique.
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Example. Suppose that »;(2U 3) = 0.6 and »:(1U2) = 0.7, i = 1,2, 3,
v(2) = v(3) = 0.2, v(2U 3) = 0.4 and that transition probabilities matrix is

H=102 02 02

0.1 0.2 0.2

0.2 0.2 0.2}

Then by calculation, 7(1) = 0.17 and 7(2) = #(3) = 0.2. By (4.6)
and the assumptions, using Bayes’ rule, v1(1) = 0.2, vy3(1) = 0.15 and
v1(2U 3) = wyy3(2U 3) = 0.6. Thus we obtain a new transition probabilities
matrix :

02 06
o= [0.15 0.6]

Iteration yields 7'(1) = 0.158 and #'(2U 3) = 0.6. It is easy to see that
m'(2U 3) # 7(2) + 7(3) and also 7'(1) # x(1). A more complicated example
can show 7 (j) # [§° mi({s : ¢;(s) > a})da.

5. CONCLUSION

In this paper, I have shown in the presence of uncertainty a steady-
state probability exists. However, the steady-state probability is not unique.
Therefore, a unique long-run expectation may not exist under uncertainty,
while without uncertainty it does. This implies that a long-run expectation
provides rougher idea under uncertainty than under risk.
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