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Abstract

We consider the problem of obtaining several types of simultaneous
confidence bands for the survival curve under the additive risk model.
The derivation uses the weak convergence of normalized cumulative
hazard estimator to a mean zero Gaussian process whose distribution
can be easily approximated through simulation. The bands are illus-
trated by applying them from two well-known clinical studies. Finally,
simulation studies are carried out to compare the performance of the
proposed bands for the survival function under the additive risk model.
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1. INTRODUCTION

The additive risk model(Lin and Ying, 1994) specifies that the hazard
function A(t) for the life time 7" under Z(¢) = z(¢) has the following form

At 2) = Aolt) + Bz (1), (1.1)

where Z(-) is a p-vector of possibly time-varying covariates, 8y is a p-vector
of unknown regression parameters and A¢(-) is an unspecified baseline hazard
function. One of the basic problems of practical interest in this model is the
construction of confidence bands for the survival function as a function of
covariates.

Let T and C denote the failure time and censoring time, respectively. As-
sume that covariates Z(-) is bounded and 7" and C are conditionally indepen-
dent given Z(-). Suppose that the data consists of n independent replicates
of (X,A,Z(")), where X = min(T,C), A = I(T < C), and 1 — A is the
censoring indicator function. Let N;(t) = A; I(X, <t) (¢ =1,2,---,n), be
a counting process for the i-th subject, which indicates that the true failure
time of the i-th subject is observed up to time ¢t. Under model (1.1), the
intensity function for N,(t) is given by

Y.(t)dA(t; Z,) = Yi(t){dAo(t) + B Z.(t)dt},

where Y;(t) is a predictable indicator process indicating whether or not the
i-th subject is at risk just before time ¢, and Aq is the baseline cumulative
hazard function.

The counting process N;(-) can be uniquely decomposed so that for every
7 and t,

Ni() = Mi(t) + /0" Y, (s)dA(s: Z,).

where M;(+) is a local square integrable martingale. Therefore, the natural
estimator of Ag is given by

o~

P {dNi(s) — Yi(s)B'Zi(s)ds}
Yi(s ’

where BA is a consistent estimator of By. Lin and Ying(1994) proposed the
following estimating function

AO(Bat) = /0 Z:;,,ZI

U(B) = Z/Om Z({AN:(t) — Yi(t)dRo(8, 1) — Yi(£)8 Zi(t)dt)
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and estimated the regression coeflicients by solving the equation U (3 ) =0.

For predicting survival experience for future subjects under the model
(1.1), we are interested in estimating the cumulative hazard function

A(t; z0) = /Ol A(s;z0) ds

and the survival function S(t;z9) = e~A(*0) for a subject with a particular set
of covariate values z(-). By plugging the estimators of Ao(t) and Bo, A(¢; 2p)
is estimated by

K(t;zo) - ;le/ol {dNi(s) 'z—:n}:l(*;’%(ﬁ;)zn(s)ds} + 5’ /Ot zo(s)ds

and S(t; Zo) by §(t, ZO) — e*X(t;zo)_

In the one sample case without covariates, simultaneous confidence bands
for the cumulative hazard function and the survival function have been ex-
tensively studied by Hall and Wellner (1980), Nair (1984), Bie, Borgan and
Liestgl (1987) and Borgan and Liestgl (1990), and described at great length
in the text of Andersen et al.(1993). These bands depend on the fact that
the normalized Nelson—Aalen estimator or Kaplan-Meier estimator converges
weakly to a mean zero Gaussian process which can be transformed to the
standard Brownian bridge.

In the additive risk model or the proportional hazards model, where co-
variates are involved, n%{ /A\(t; z9) — A(t; 20)} also converges weakly to a mean
zero Gaussian process. But in these cases, we cannot construct the simul-
taneous confidence band for the survival function directly since the limiting
distributions cannot be transformed to the standard Brownian bridge. In
the proportional hazards model, Burr and Doss (1993) developed simulated—
process bands and bootstrap bands for the pth quantile of the distribution
of the lifetime of an individual as a function of covariates. Recently, Lin,
Fleming and Wei (1994) constructed simultaneous confidence bands for the
survival curves by simulating a Gaussian process.

In this paper, we construct simultaneous confidence bands for the survival
function under the model (1.1), by using the idea of Lin, Fleming and Wei
(1994) in the proportional hazard model. In Section 2, we derive the weak
convergence result of the process n%{]\(t;zo) — A(t;zp)}. In Section 3, we
construct the Hall-Wellner type bands and Equal-Precision type bands for
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the survival function. In Section 4, two real data sets are applied to con-
struct the proposed simultaneous confidence bands for the survival function
for illustrations. And we compare the coverage probabilities and band widths

of the proposed confidence bands through simulation studies.

2. LIMITING DISTRIBUTION

In order to construct simultaneous confidence bands for the survival func-
tion under the additive risk model, we, in this section, derive the limiting

distribution of the cumulative hazard estimator.
Let

L.(t;20) = n? { A(t;20) — A(t; 20) },
and
r=inf{t>0; H(t) =1},

where H(-) is the distribution function of the observed failure time X..
Theorem 1. Let

G(ta) = [ {z0(s) = Z(o)}ds, V(1) = %ilw)
and
0t = =3 [T {2:06) - Z@) Yi0) Zilo) do,

where

i Y1) Zi(t)
i Yi(t)

Then L, (t;2), 0 <t < 7, is equivalent to the process L, (t; z0), where

Z(t) =

- 1 &gt 1
L,,(t;zo)z—\/—__;;;/o T’-T;)dMl(s)

Gt 20) €' @ [ _
P ;/0 (Z:(s) = Z(s)} dM.(s).

(2.1)
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Proof. By the estimator of A(t; ), L, (¢; 29) can be rewritten as follows;
L/t d Vn (3 t Z(s)}d
—— = M.,' - // - .
=2 ), 5 M) + VA B~ o) [ {aols) - Z(o)} s
Also, by the Taylor series expansion of U (E) at By, (,5 — o) is of the form

B-p=3% L 1206) - o) ana).

Hence this completes the proof. O

In order to derive the limiting distribution of L,, (t; z9), let us consider the
limiting distribution of L,,(t 29) in Theorem 2.

Theorem 2. Assume that there exists a function y(¢) such that, as n — oo,

SUPg< e, | Y (t) — 7(t)| 5 0. Then the process L, (¢; zp) converges weakly to
a mean zero Gaussian process on [0, 7).

Proof. The first term of the right hand side of the equality in equation
(2.1) is tight because the two moment inequalities hold in Lemma 1 (Lin
et al.(1993)). Also, by the law of large numbers, C and G(¢; z) converge to
some nonrandom functions and

1 & [ —
=X |26 - Z()} ami(o)

converges in distribution, so L, (t; z0) is tight. Let

n.0 = 7 [

+ G'(t;20) C' {Z:(s) — Z(s)}|,
L. (t; 20) can be rewritten as
La(t; ) = Z /0  H{t, s) dM.(s). (2.2)

Since L, (t; z0) is essentially the sum of independent mean zero random vari-
ables, it follows from the Lindeberg-Feller theorem and the above tightness
result that the process L,(-;-) converges weakly to a mean zero Gaussian
process on [0, 7). Furthermore, the covariance function of L, (t; 2g) is given
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by

Cov [L,, (t1520) , ,,(tzszo)}

e[ [ {dAo(s) ;(i;;*zm as)

+G/(t1;ZO)C’D1(t2,ﬁQ)+G/(t1;20) Cl DQCG(tQ;Zo) y (23)

+ G'(t2; 20) C' D1(t1, Bo)

where t; A to = min(t;,¢3), and

1(t,8) = {:/I {Z:(s) - Zz(:if };l((z))ﬁlzl(s) ds

and
Dy =~ Z/ (Z,(s) - Z(s)}°2 Yi(s) {dAo(s) +BOZ () ds},

where for column vector a, a®? denotes the outer product aa’. The variance
of L, (t1;2) can be consistently estimated by

' dAo(B, 37 (s)d
&Q(t;zo) =n/0 0(5,25”) +Y?(S)(S) °
j=1 +1

126 (t;20) C' Dy (t, B) + G'(t;20) C' Dy C G(t, 20),

B = L5 [ 1200~ 2001 1.6) (dBolB ) + B0} )

O

By the covariance function of L, (t; z), the process L, (+;z9) does not have
an independent increment structure asymptotically even if covariates are time
invariant. Therefore, the limiting distribution cannot be transformed to the
standard Brownian bridge for construction of the confidence band.

We now need to show how to approximate the limiting distribution of
the process n -5L,(-;z). If we know the stochastic structure of the mar-
tingale process M,(s), we could easily simulate L.(-;2). But the distri-
butional form of M,(s) is unknown, so one way is to replace M,(s) with
one which has a known distribution (Lin et al.(1993)). Since for any ¢,
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E[M,(¢)] =0, Var[M,(t)] = E[N,(t)], a natural candidate for M,(s) is N,(s)G,,
with the same first and second moments, where N (s) is the observed counting
process and {G, ; I =1, ---,n} denotes a random sample of standard normal
variables. Then we have the representation for L, (t;z) by the definition of
counting process N, () as follows;

Z/ { ) 5 G (t20) ' {24(5) Z(s)} | dNi(5) Gi.

We regard {G} (1 = 1,2, -+, n) asrandom and {X;, A;, Z;(-)} (i = 1,2,- -, n)
as fixed in L, (-; z0). Therefore we obtain the following Theorem 3.

Theorem 3. The conditional distribution of f,,,,(t; z9) given the observed
data {X,,A;, Z,(-)} (1 =1,2,---,n) is the same in the limit as the uncondi-
tional distribution of L, (¢; z).

Proof. Z,,, (t;20) can be rewritten as

X<t)

E" (t;ZO) = Z A, (X)

1

1 /
fz G'(t;20) C'{Z:i(X:) = Z (X))} A G,
and the only random components in E(t zp) given {X;,A;, Z;} are the inde-
pendent standard normal variables {G,}. Thus the proof of the tightness of

L(t z9) is 5 analogous to that of Theorem 2. Also, by description of L, (t; z0)
in (2.2), L, (t; zo) can be rewritten as

En (tsz) = ZA H(t, S) dN,(S) G,
i=1

Since L, (-; 20) is simply the sum of n independent mean zero random variables
at each fixed time point, it follows by applying the Lindeberg-Feller theorem
and the above tightness result that the process L, (+; zo) converges to a mean
zero Gaussian process.

Also, the covariance function of L, (t; zp) is given by

COV{Z"(tl;ZQ), Eu(tZ;zO) ( {XHAI’Z/()} 9 z:l,?,n]
iI(X,,; <t Aty) A
= (EL X))
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DOI(X: S t) A
G'(ty; C’ ——————-
+ (l 20) ; Y(X)
) Z I(Xi < ) A
G (t2;20) O3 =
2i20) O S S

+% @' (ty:20) C' Z A {Z4X) = Z(X)IP2C Gty 20)-

i=1

{Z(X;) - Z(X:)}

{Z:(X:) — Z(X:)}

And the covariance function of L, (¢;ze) converges to (2.3) with probability
one by the fact that Y;(s) {dA¢(s) + ByZi(s)ds} is the intensity function of
N,(s). Furthermore, the variance of L, (t; zo) is given by

~2¢,. = 3 I(XiSt)Ai
P (tiz0) =n 37 " Y5(X))
» I( t)A

120 ()0 S e
izz:l J 1 (X)

+-71; G(t20)C'S A AZ(X) - Z(X)}®2C Gty 20)

i=1

{2.(X:) - Z(X.)}

and this is asymptotically equivalent of o%(¢;20). This completes the proof.
(]

By the above theorems, L, (+;20) and L. (+; o) have the same limiting dis-
tribution given the observed data {X;, A;, Z;(-)}, (i =1,2,---,n). Therefore,
we simulate a number of realizations from Z,,( zy) by repeatedly generating
normal random samples {G,} while holding the observed data {X;, A, Z;(-)},
(i =1,2,---,n) to approximate the distribution of L, (-; 29).

3. CONSTRUCTION OF CONFIDENCE BANDS

For constructing 100 (1—a) % confidence bands for S(+; z0) on {t1, ta 1(0<
t, <ty < 7), it is useful to consider the following process.

B(t; 20) = v g(t; z0) [ ¢{A(t;20)} — ¢{A(t; 20)} ],

where ¢ is a known function whose derivative ¢’ is continuous and nonzero
in the time interval (¢, ts] and the weight function g(+;2¢) converges in
probability to a nonnegative bounded function uniformly on [¢;, t2]. By the
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functional delta-method, the process B(t; z;) is asymptotically equivalent to
the process B(t; zg) given by

B(t; 20) = g(t, 20) &' {A(t; 20)} Lo (¢ 20).

And by Theorem 3 the distribution of B(t; z9) can be approximated by that
of B(t; z9) given by

B(t;20) = g(t, z0) ¢'{A(t; 20)} L. (t; z0).

Also, the construction of a 100 (1 — a) % confidence band requires q,, the ap-
proximated value of the 100 (1—«) percentile of the distribution of sup { B(t; z9) ;
t1 <t <ty }. q, is the value satisfying Pr{max, <x,<i, | B(X;;20)| > ¢.} =
«, the probability being estimated through simulation. Then an approximate
100 (1 — ) % confidence band for ¢ {A(t;z)} on [¢;, to] is

S{A(tz0)) ¥ %qa Ja(t; z0) | (3.1)

By letting ¢(z) = = and ¢(z) = e *, one may calculate the confidence
bands for S(-, z), directly. But the resulting band for A(, zp) may include
negative values, and that of S(-, z9) may contain values outside {0, 1]. In order
to avoid this problem, we choose the log transformation, ¢(x) = log x, which
not only restricts the bands for A(:, zp) and S(, z9) to meaningful range but
also improves the attained coverage probabilities in small samples.

The weight function g(-;z¢) affects the relative widths of the band at
different time points. We shall consider the two weight functions as

A(t; 2) A(t; 2)
1+ 52(t;29)’ a(t;20)’

which is given by Lin, Fleming and Wei(1994) in the proportional hazards
model.

91(t; 20) = g2(t; z0) =

3.1 Hall-Wellner type bands

Let ¢(z) = logz and g(-;29) = g1(; 20) in (3.1), the approximate 100 (1 —
a) % confidence band for S(:; z9) is of the form
,§(t; zo)exp [:tn" 5' 41,0 {1+:7\2 (tize)} / x(t;zu)] ’
where ¢, , is the critical value associated with g;(-; 29). We will denote it by

THW band, because the band corresponds to the one sample transformed
Hall-Wellner band (Bie, Borgan and Liestgl, 1987).
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In the processes B(t:z) and B(t; zo), let

: 1
" and g(t; 20) =

o= ez

then the process B(t;zo) is rewritten as

1

B, (t; =vVn—m8 M
1t 20) \/n1+02(t;z0)

[§(t; z9) — S(t;zg)]

and é(t;zo) is
Bi(t; 20) = —g1(t; z0) log' {A(t; 20)} L (t; 20) S (t; z0).

The distribution of B (¢;2¢)/S(¢; 20) can be approximated by that of E(t; 2p)
associated with ¢(z) = logz and g(¢;29) = ¢1{t;20). Thus the resulting
100 (1 — «) % confidence band for S(:; ) is of the form

S(t;z0) F n ¥ qua S(t;z0) {1 +82(t;20)}.

We shall call it as HW band, because the band is equivalent to the original
one sample Hall-Wellner band (Hall and Wellner, 1980).

3.2 Equal-precision type bands
Let ¢(z) = logz and g(-; z0) = g2(; 20) in (3.1), the approximate 100 (1 -
o) % confidence band for S(-; zp) is of the form

§(t, zo)exp[:tn_ %qz_,. ;(l:z())/x(t:z(l)]

where g, is the critical value associated with g»(-;z). We will denote it
by TEP band, because the band corresponds to the one sample transformed
Equal-Precision band (Bie, Borgan and Liestgl, 1987).

Tn the processes B(t;zy) and B(t; zo), let

) 1
P(z) =e " and g(t;2) = m,

then the process B(¢; zp) is rewritten as

Bo(t; zp) = \/55-2—(:_2—0) [§(t;z0) — S(t;zo)]
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and é(t; zg) is

Bg(t;ZO) = —92<t;20) IOgI{A(t;ZQ)} L,l(t;ZQ)S(t;ZO).

The distribution of B (t; 2z9)/S(¢; z5) can be approximated by that of l§(t; zg)
associated with ¢(z) = logz and g(t;z) = g2(t;20). Thus the resulting
100 (1 — &) % confidence band for S(-; 2,) is of the form

S(t;20) T n7% o S(t;20) 5(t; 20).

We shall call it as EP band, because the band is equivalent to the original
one sample equal-precision band (Nair, 1984).

Because the approximations tend to be poor for ¢ close to 0 or 7, we shall
confine HW type bands between the first and last failure time points. Also,
according to the recommendations of Nair (1984) and Bie, Borgan and Liestgl
(1987) for the one sample case, we shall restrict the EP type bands to the
time interval [t], ¢3] such that ¢; = 1 — &, = 0.05, where

a%(ty; 20)

= TR g 9
[T 5%t z0) )

Cr:

4. NUMERICAL RESULTS

Two data sets are illustrated to construct the proposed confidence bands,
which are HW, EP, THW and TEP band.

The first one is a clinical trial to evaluate the efficacy of maintenance
chemotherapy for acute myelogenous leukemia (AML). The control (non-
maintained) group has 12 remission times with one censored case and the
treatment (maintained) group has 11 remission times with four censored case.
The only covariate is the group indicator which is denoted as control group
or treatment group. In this data, Song et al.(1996) showed that the additive
risk assumption holds (p-value = 0.627).

Figure 1 shows the proposed 95% confidence bands for the survival func-
tion in control group. From Figure 1, it is observed that the lower bound of
HW and EP bands are negative after around 30 weeks, but the THW and
TEP bands remedy this problem.

For the second example, let us consider Stanford heart transplant data
taken from Crowely and Hu (1977). In this data, we only regard age as
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covariate and we know that the additive risk model assumption holds by the
results of Song et al.(1996) (p-value = 0.238).

Figure 2 displays the proposed 95% confidence bands for survival function
for a patient with 30 years of age. From Figure 2, we can observe that the
EP type bands are narrower than HW type bands and the transformed bands
narrower than the nontransformed bands for large time. It implies that the
EP type bands are more precise than the HW type bands and the transformed
bands are more precise than the nontransformed band.

Now, we consider the performances of the proposed confidence bands
through the Monte Carlo simulation. The simulation scheme is designed to
compare coverage probabilities with a time invariant 0 — 1 covariate Z. The
simulated coverage probabilities are estimated from 1000 replications and for
each replication, the boundary values ¢; , and gz, are calculated from 1000
realizations of B (;z0). And, as a censoring distribution, exponential distri-
bution with parameters having censoring rates approximately 10% and 30%,
respectively are considered. The results of these simulations are given in Table
1. From Table 1, we can see that all bands tend to achieve the true confidence
level as n increase and the coverage probabilities of all bands tend to decrease
as the censoring rates increase. In the case of z = 0, the performances of the
nontransformed bands are better than those of the other bands in the aspect
of the coverage probabilities, and in the case of z = 1, the performances of
all the bands tend to be similar.

Table 1. Empirical coverage probabilities of confidence bands for survival
function with a = 0.05 under the model A(t;z) = 1+ 2=

10% censoring 30% censoring
n 2z HW THW EP TEP HW THW EP TEP

30 0 095 086 094 0383 094 084 092 080
1 08 091 093 091 084 085 086 0283

50 0 095 088 093 0.84 094 087 093 0.83
1 089 093 091 093 092 093 093 092

100 0 096 092 096 0.88 094 090 094 0.5
1 094 095 095 094 094 094 094 093
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Figure 1. 95% confidence bands for survival function of patients in control
group - AML data
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Figure 2. 95% confidence bands for survival function of patients with age
30 - Stanford Heart Transplant data
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