On a Bayes Criterion for the Goodness-of-Link Test for Binary Response Regression Models : Probit Link versus Logit Link

  • Kim, Hea-Jung (Department of Statistics, Dongguk University, Seoul, 100-715)
  • Published : 1997.06.01

Abstract

In the context of binary response regression, the problem of constructing Bayesian goodness-of-link test for testing logit link versus probit link is considered. Based upon the well known facts that cdf of logistic variate .approx. cdf of $t_{8}$/.634 and, as .nu. .to. .infty., cdf of $t_{\nu}$ approximates to that of N(0,1), Bayes factor is derived as a test criterion. A synthesis of the Gibbs sampling and a marginal likelihood estimation scheme is also proposed to compute the Bayes factor. Performance of the test is investigated via Monte Carlo study. The new test is also illustrated with an empirical data example.e.

Keywords

References

  1. Journal of the American Statistical Association v.88 Bayesian analysis of binary and polytomous response data Albert, J. H.;Chib, S.
  2. Biometrika v.68 On two families of transformations to additivity for binary response data Aranda-Ordaz, F. J.
  3. Journal of the American Statistical Association v.90 Marginal likelihood from the Gibbs output Chip. S.
  4. Modeling Binary Data Collett, D.
  5. Applied Statistics v.42 Bayesian inference for generalized linear and proportional hazard models via Gibbs sampling Dellaportas, P.;Smith, A. F. M.
  6. Non-Uniform Random Variate Generation Devroy, L.
  7. Probit Analysis(3rd ed.) Finney, D. J.
  8. Journal of the Royal Statistical Society, Ser. B v.56 Bayesian model choice: asymptotic and exact calculations Gelfand, A. E.;Dey, D. K.
  9. Journal of the American Statistical Association v.85 Illustration of Bayesian inference in normal data models using Gibbs sampling Gelfand, A. E.;Hills, S. E.;Racine-Poon, A.;Smith, A. F. M.
  10. Journal of the American Statistical Association v.85 Sampling-based approaches to calculating marginal densities Gelfand, A. E.;Smith, A. F. M.
  11. Journal of the American Statistical Association v.82 Small sample properties of probit model estimators Griffiths, W. E.;Hill, R. C.;Pope, P. J.
  12. Theory of Probability(3rd ed.) Jeffreys, H.
  13. Generalized Linear Models Nelder, J. A.;McCullagh, P.
  14. Journal of the Royal Statistical Society, Ser. B v.56 Approximate Bayesian inference by the weighted likelihood Bootstrap Newton, M. A.;Raftery, A. E.
  15. Journal of the American Statistical Association v.91 Bayesian inference for semiparametric binary regression Newton, M. A.;Czadao, C;Chappell, R.
  16. Applied Multivariate Analysis(2nd ed.) Press, S. J.
  17. Journal of the American Statistical Association v.90 Information distinguishability with application to analysis of failure data Soofi, S. S.;Ebrahimi, N.;Habibullah, M.
  18. Tools for Statistical Inference(2nd ed.) Tanner, M. A.
  19. Jornal of the American Statistical Association v.82 The calculation of posterior distribution by data augmentation Tanner, M. A.;Wong, W.
  20. The Annals of Statistics v.22 Markov. chains for exploring posterior distributions Tierney, L.
  21. An Introduction to Bayesian Inference in Econometrics Zellner, A.