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Optimal Control of a Dam
with a Compound Poisson Input’

Jiyeon Lee ! and Eui Yong Lee 2

Abstract

An infinite dam with a compound Poisson input having exponential
jumps is considered. As an output policy, we adopt the PM policy.
After assigning costs to the dam we obtain the long-run average cost
per unit time of operating the dam and find the optimal values of A
and M which minimize the long-run average cost.

Key Words : Dam process; P} policy; Compound poisson process;
Long-run average cost.

1. INTRODUCTION

In this paper, we consider an infinite dam with a compound Poisson input
having exponential jumps and adop the P} policy as a control policy. It
is assumed that the level of water is initially 0 and increases jumpwise due
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to rains. The rains fall around the area of the dam according to a Poisson
process with rate v (> 0) and each instataneously increases the level of water
in the dam by an exponential amount with mean x (> 0). As an output
policy, we consider the PM policy introduced by Faddy(1974). The release
rate is 0 until the level of water reaches a threshold level A (> 0). As soon as
the level of water exceeds ), the water starts to be released at a rate M until
the dam becomes empty. Once the level of water reaches 0, the release rate
turns to 0 until the level of water reaches ) again, and this cycle is repeated.

We assume that the release rate is increased from 0 to M with cost K M,
K being a non-negative constant, but it is decreased from M to 0 with no
cost and any such changes take effect instantaneously. We also assume that
there are a reward of A monetary units per each output unit of water and
a holding cost B per each unit of water in the dam, A, B being positive
constants. Without loss of generality, we may put A = 1 by considering K
and B as the relative costs compared to A. In section 2, we find the long-
run average cost per unit time of operating the dam, assuming that the dam
process {X (t), t > 0} is stationary, where X (¢) denotes the level of water in
the dam at time ¢. We calculate a unique value of A which minimizes the
long-run average cost and we also show that there is an optimal release rate
M which minimizes the long-run average cost in section 3.

Faddy(1974) obtained the optimal release rate for a dam with finite ca-
pacity by assuming that the flow of water into the dam is determined by
an almost surely continuous Wiener process. Zuckerman(1977) developed a
rigorous approach to the problem considered by Faddy(1974) and also consid-
ered the optimal policy which minimizes the expected total discounted cost.
A dam model with a compound Poisson input is introduced by Bar-Lev and
Perry(1993). They derived the integral equations and solved the equations to
obtain the stationary distribution of the level of water X (¢). In this paper, we
extend the Bar-Lev and Perry’s analysis by assigning costs to the dam and
seeking to minimize the long-run average cost by varying the threshold level
A and the release rate M, when the amount of each input is exponentially
distributed.

2. THE LONG-RUN AVERAGE COST FUNCTION

Conusider the points where the reservoir becomes empty. The sequence of
these points forms an embedded renewal process because after these points
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the process {X (t), t > 0} regenerates itself. Let T be the random variable
denoting the time between successive renewals. Then,

T = Tox + Tho, (2.1)

where = denotes equality in distribution, Ty, is the period of waiting until
the level of water exceeds the threshold X after the reservoir being empty, and
Tyo is the period of releasing water until the dam becomes empty.

By the Renewal-Reward theorem, the long-run average cost per unit time
C(A, M) for a given threshold level A and release rate M is given by the ex-
pected cost per cycle divided by the average length of a cycle, where the cycle
denotes the time between two successive embedded renewal points. Since the
expected cost per cycle is KM — M E[Tx] + BE| J& X (t)dt)] it follows from
(2.1) that the long-run average cost is given by

KM — ME[Tx| + BE[fy X(t)dt]

C(\M) = BT
KM - ME[T] . . BUZ X(t)dt
E[Tg,\] + E[T,\O] E[To)‘] + E[T,\o]'

To obtain E[Ty,], we define {N(z), = > 0} as a Poisson process with rate
1/, then we can see that N(\)+ 1 is the number of rains before water starts
to be released and the waiting time Sy (»)+1 in the Poisson process is the level
of water at the moment that water starts to be released. Notice that

Tox = E1+ Ey+ -+ Enpy+s

and
T — A
P{Svpy+1 Sz} =1~ exp(———) forz > A,
n

where E,, Es,--- are i.i.d. exponential random variables with rate v. An
argument similar to that of Lee and Lee(1993) shows that

EINO)+1] _A+n
v 17

E[T(),\] =
To obtain E[Txo] we apply the argument of Cox and Miller (1965, pp. 245-

246) used to analyze the busy period of M/G/1 queue and can show that

_ ElSvpyn] _ A tp
M — uv M —puv’
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when M > pv, ie., when the release rate of water is larger than the input
rate of water during the releasing period.

To calculate E[f; X (t)dt]/E[T], we divide the original process { X (t), t >
0} into the following two processes. Process {X;(t), t > 0} is formed by
seperating from the original process the parts on the periods of releasing
water and on the periods of the dam being empty and by connecting these
parts together. Process {X,(¢), ¢ > 0} is formed by connecting the rest
parts of the original process. Let T} and T, denote cycles between successive
embedded renewal points in {X;(¢), t > 0} and {X;(¢), t > 0}, respectively.
Then we have that

E(fy X(t)dt] _ E[T]) B[y Xa(t)dt] | E[To] E[fy” Xa(t)dt]

E[T] - E[T) E[Ty] E[T)] E[Ty] (2:2)
Notice that M4+
E[Ti] = E[Ty] +1/v = oM = 2) (2.3)

and
A
E[D] = E[Tn] - 1/v = —.
13

First, to obtain E[fy* X,(t)dt]/E[T}], we examine the process {X;(t), t > 0}.
Let Fy(z,t) = P{X;(t) < z} denote the distribution function of X;(¢). In
a small interval (t,t + At), we can have the following mutually exclusive
relations between X,(t) and X, (¢ + At) depending on whether rain comes;

_ 0, if 0 < X1(t) < MAt
Xt Ay = { Xi(8) — MAL, if X (t) > MA,
with probability 1 — v At + o(At),

and
Sy — MAt, if X;(¢t)=0
X (t+ Aty = 0, ifo< X (t) < MAt-Y
X:(t)+Y — MAt, if Xi(t) > MAt-Y,
with probability v At + o(At),
where Y is the exponential random variable with mean u.
Thus
Fi(z,t+At) = (1-vAY)P{X:(t) - MAt <z}
+vAtP{Sn()+1 — MAt < z, X,(t) = 0}
+vAtP{X,(t)+Y — MAt < z, X,(t) > 0} + o(At).
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Performing a Taylor series expansion on P{X,(t) — M At < =z}, rearranging
the above equation and letting At — 0, the following integro-differential
equation is obtained;

o 9 ' — A
Y F(z,t) = M—F(z,t)+vF(0,¢)[1— exp(— —2) T asa)
ot Oz m

z—Y

z 0
Bz, 0) +v [ 1= exp(=T=D) 2 Fi(y, )y
0 Oy
for x > 0, (2.4)

where I, denotes the indicator of the event A.

Notice that Fy(z,t) consists of a discrete probability Fi (0,t) and a den-
sity fi(z,t) for z > 0, so does the stationary distribution F} (z). Notice
also that this stationary distribution is the same as the limiting distribu-
tion lim,_, o Fi(z,t), since the renewal points are embedded in the process
{X,(t), t > 0} (Baxter and Lee(1987)).

Putting 2 Fi(z,t) = 0 as t tends to co and letting lim, o fi(z,t) = f1(z)
and lim, ., F1(0,t) = Fy(0), we can derive from equation (2.4) that, for
x> 0,

d _
0 = Mg—fl(x) + ZFy(0) exp(—i—)\)I{IZ,\} - vfi(z)
z p p

v &
+—/ exp(—
wJo

and when z = 0,

T —

y)fl (y)dy, (2.5)

Taking Laplace transforms in equation (2.5), we have that

v exp(—As)

0= M[sfy(s) — f1(0)] + 1+ ps

Fi(0) v fi () + 75 fi () @)

where f;(s) = Jo° exp(—sz)fi(z)dz.
Solving equation (2.7) with the normalizing condition F1(0) + f] 0) =1
and equation (2.6), we have that

vF(0)[1 + ps — exp(—As)]
Ms(1l+ ps) — pvs

fi(s) =

where Fy(0) = (M — pv)/(M + Av), where M > pv.

151



152 Jiyeon Lee and Eui Yong Lee

Thus, the Laplace-Stieltjes transform of F;(z) is given by

F(s) = /Ooo exp(—sz)dF(z)
= Fi(0) + f1(s)
Fi(0)[Ms(1+ ps) +v — vexp(—As)]
Ms(1+ us) — pvs '

(2.8)

We now derive the first moment of the stationary distribution F(z). Dif-
ferentiating equation (2.8) with respect to s and letting s — 0 yields

(M — pv)vA® + 2Mpv (X + p)
2(M = pv)(M + M) ’

Jlim E[X,(t)] = for M > pv (2.9)

which is the same as E[f;" X,(t)dt]/ E[T:](see Wolff(1989, pp. 92)).
On the other hand, notice that

T>
/0 Xa(t)dt = EySy + - + En()Sn (),
and hence

E| /0 " Xy (t)dt] = 2% (2.10)

Substituting expressions (2.3), (2.9) and (2.10) into equation (2.2) we obtain

E[fT X (t)dt] _ (M = )N+ 260 (A + )
E[T] 2(M — uv)(A +p)

for M > pv.

In summary, the long-run average cost is given by

Kuv(M — uv) L+ B (M — pv)A? + 2p20 (X + )
At p 200 + u)(M — pv) ’
for M > pv.

C(\, M) =
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3. OPTIMAL POLICY

We, now, try to find the optimal value of the threshold A and that of the
output rate M which minimize the long-run average cost C (A, M) obtained
in section 2. To find the optimal value A* of A for a given M > pv, we
differentiate C (A, M) with respect to A and put ZC(A, M) = 0 which is
equivalent to

BA? +2Bpux — 2K pv(M — pv) = 0.

Then the above equation shows that A* is given by

A= —pt \ﬂﬂ 4 2Kpr (M —pv) () (3.1)

B

For a given A > 0, to find the optimal value M* of M, we again differenti-
ate C(\, M) with respect to M and put aLMC()\, M) = 0 which is equivalent
to )

KM?* - 2KuvM + Kp*v? — Bu(h + ) = 0. (3.2)

Then, the above equation shows that M* is given by

| Bu(A + p)
M* = b AN S et
uv + %

From equations (3.1) and (3.2) we can see that as the releasing cost K
increases, the optimal value \* increases, but the optimal value M* decreases,
so that we open the dam less-frequently. On the other hand, if the holding
cost B increases then M* increases but A\* decreases, so that less amount of
water is kept in the dam in the long-run.
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