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Power Flow Solution Using an Improved Fitness
Funclion in Genetic Algorithms

Seungchan Chang, Jae-Yoon Lim, and Jung-Hoon Kim

Abstract

This paper presents a methodology of improving a conventional numerical model in power systems using Genetic Algorithms(GAs) and
suggests a GAs-based model which can directly solve the real-valued optimum in an optimization procedure. In applying GAs to the
powér flow, a new fimess mapping method is proposed using the probability distribution function for all the payoffs in the population
pool. In this approach, both the notions on a way of the genetic representations and a realization of the genetic operators are fully
discussed to evaluate the GAs’ effectiveness. The proposed method is applied to IEEE 5-bus, 14-bus and 25-bus systems and, the results
of computational experiments suggest a direct applicability of GAs to more complicated power system problems even if they contain

nonlinear algebraic equations.

I. Intreduction

Genetic Algorithms(GAs) based on the mechanisms of evolu-
tion and natural genetics have swrong points in not using derivative
informations in an optimization procedure and, they provide
robust search in complex spaces and an alternative to traditional
optimization techniques by using directed random searches to
locate optimal solutions. The main operations of GAs are made
by reproduction or selection, crossover, mutation process and,
their carrying major factors are population size, chromosome
length, crossover rate, mutation rate and so on. According to the
objective function how to construct, we need to prescribe its
adequate fitness function. And, a variety of encoding, crossover
and mutation methodologies enable us to have diverse approaches
to the problems[1, 2].

Over the last decade, considerable research has focused on
improving GAs performancef1]. Efficient implememationsg of the
proportionate selection scheme such as the stochastic remainder
technique and the stochastic universal sampling technique have been
proposed to reduce the sampling errors. Reproduction mechanisms
such as rank-based selection, elitist strategies, steady state selection,
and tournament selection have been proposed as alternatives to
the proportionate selection scheme. Crossover mechanisms such
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as two-point, multi-point and uniform crossover have been proposed
as improvements on the traditional single point crossover technique.
Gray codes and dynamic encoding have overcome some pro-
blems associated with fixed point integer encoding. Departing
from the traditional policy of static control parameters for the
GAs, adaptive techniques dynamically vary the genetic control
parameters. Recently, significant innovations include the distri-
buted GAs and parallel GAs[2].

Most of the power system analysis takes on highly nonlinear
and computationally difficult characteristics in an optimization
procedure. To solve these problems, many methodologies have
been devised and modified so far. In recent years, there has
been a growing concern for GAs applications to the power
system problems. Many papers have established the validity of
GAs applicability to the power system control and operation
such as economic dispatches[3], reactive power optimization[4],
therma! unit commitment{5], distribution network plarining[ﬁ] and
so on. But, most of these works take GAs as a pre-searching tool
in the optimization procedure and so stick to use a hybrid-type
model.

In 1991, Xiaodong Yin and Nog&! Germay[7] experienced GAs
applicability to the load flow problem with Klos-Kerner 3-node
system and Ward-Hale 6-node system using the concept of
Holland’s SGAs. Before applying SGAs to the load flow, some
factors about the genetic representation have to be considered such
as, coding the variables into a finite string, treatment of constraints
and mapping the objective function to a fitness function. Predefined
fimess function which is an inversed type of objective is evalu-
ated during the entire genetic process. To enhance the process
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property, it uses a sharing function that the population is divided
into different subpopulations according to the similarity’ of the
individuals in the population. This approach will have a good
convergence especially when the variables of representation are
small, but the fitness function itself may consecutively accumulates
erroneous evaluation when the ill-conditioned variables are updated
on the process. Therefore, this process often falls into local
extrema when solving a large-scale system.

In this paper, we intend to enhance the numerical models in a
power system with the aid of the resurgent GAs. This paper
deals with the optimization of nonlinear algebraic equation. Since
it needs a exact solution, the solution procedure will be rather
complex and finding solution is more difficult than those of
conventional genetic optimizations such as, economic load
dispatch and unit commitment which are relatively concerns on
- the better optimum to the given problem. By this way, we have
a defect of consuming much compution time to calculate the
errors in each string and binary representation of variables due
to the random trasition property of GAs which is not found in
mathematical optimization. In order to secure convergence and
solution itself in GAs optimization, comparative approach with
numerical methods will help to confirm GA’s effectiveness and
propriety.

To proceed with genetic application to the algebraic nonlinear
equations, we have decomposed into two major topics. Frist, for
the purpose of ensuring the propriety of this approach, a
trigonometric objective function which contains -multiple solution
within a specified range has examined by comparison with
mathematical optimization techniques such as, quasi-Newton or
Davidon-Flecher-Powell method. Secondly, the study on a power
system application using GAs has carried out with solving the
state variables eg. voltage magnitude and phase angle in power
flow. In genetic operation, each chromosome’s fitness is scaled
in .many ways to prevent the premature convergence. And, we
propose the methodology of prescribing the fitness function with
an assumption that all the payoff values in the population pool
depend upon the Q function defined by the Gaussian cumulative
distribution function.

II. An Optimization Using GAs

1. Genetic Algorithms

GAs manipulate a population of potential solution to an optimi-
zation or search problem. Specifically, they operate on encoded
representations of the solutions, equivalent to the genetic material
of individuals in nature, and not directly on_ the. solutions
themselves. Each solution is associated with a fitness value that
reflects how good it is and compared with other solutions in the
population.- The higher the fitness value of an individual, the
higher the chances of survival and reproduction and the larger

its representation in the subsequent epoch. Recombination of
genetic material in GAs is stimulated through a crossover mechan-
ism that exchanges portions between strings. Another operation,
called ‘mutation, .causes “sporadic and random alteration of the
bits of strings. Mutation also has a direct analogy from nature
and plays the role of regenerating lost genetic materials.

Fundamental to the GAs structure is the encoding mechanism
for representing the optimization problem’s’ variables. The encoding
mechanism depends upon the nature of thé problem variables.
For example, when solving for the real-valued" problem, the
variables assume continuous values, while the variables in a
integer-valued problem are binary quantities. In each case, the
encoding mechanism should map each solution to a unique
binary string.

The objective function, the function to be optimized, provides
the information for evaluating each string. However, its range of
variables varies from problem to problem. To maintain uniformity
over various problem domains, we use the fitness function to
normalize the objective function to a convenient range of 0.0 to
1.0. The normalized value of objective function is the fitness of
the string, which the reproduction mechanism uses to evaluate
the strings of the population.

Using genetic operators which are reproduction, crossover and
mutation, the algorithm creates the subsequent epoch from the
strings of the current population. As a process exit criterion, a
predefined number of epoch is generally used and then, the
results of the fittest chromosome through the entire epoch are
designated as an optimum. Other criteria, such as the difference
between the maximum and minimum fitness, the rate of increase
in maximum fitness and the ratio between the average and
maximum fitness could be used.

Fig. 1 summarizes the working of GAs in pseudo-C code,
which has the following components: a population of binary
strings, genetic control parameters, a fitness function, genetic
operators and a mechanism to encode the solutions as binary
strings. ’ ’

void main(void)
!
int epoch;

initialize(old_population);
evaluate(old_population);
for (epoch=1; epoch < MAX_EPOCH; epoch++)

new_population = reproduction(old_population);
crossover(new_population);
mutation(new_population);
evaluate(new_population);

old_population = new_population;

}

Fig. 1. The working of GAs represented in pseudo-C code.
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2. A Fitness Mapping with the Q Function

There can be many ways how to determine the fitness value,
since it takes a propensity for problem-dependent characteristics.
In minimization problem, an exponential fitness mapping is
possible to represent the payoffs. And, just taking simply inver-
sion of the payoffs can be another fitness mapping method.
However, it often fails to apply for the problems with multi-
variable. In this section, we propose the methodology of prescribing
the fitness function with an assumption that all the payoff values
in the population pool depend upon the error function defined
from Gaussian cumulative distribution function(cdf).

O(x) is the cdf of a Gaussian random variable with m=~0 and
o=] :

O(x) = ﬁf;e‘”zdt. )

Therefore, any probability involving an arbitrary Gaussian random
variable can be expressed in terms of ®(x). Q function is
defined by

i

Q(x)

1

——\[5—7; fme —flzgy

According to the Borjesson’s work[7], it has been found to give
good accuracy for Q(x) over the range O<x<oo,

~ 1 1 —£2
W) = ( (1—a)x+a x2+b)me . @

where, a = I/rand b = 21 .

As shown in Fig. 2 (b), the region is the normalized and
sorted errors or costs of the objective function and the domain is
their corresponding fitness values. The chromosome which has
minimum errors in the population is assigned to fitness 1.0 and,
the chromosome with maximum errors is mapped into fitness 0.0.

3. Approaches to Trigonometric Function

1} A Unimodal Case

For the purpose of taking prior steps to resolve the multiple
solutions occurred in power systems, we have made an approach
of determining the optimal points in a trigonometric objective
function. The objective function to be used for GAs optimization is

. — . ) _ 2
minimize j(l x1x251nx2)2+(1 X1X5C05X1) @

subject to —1 < x, <1, —-1<x <1

Since the described problem is kind of multi-variable
optimization, the whole chromosome can be constructed by
concatenating each. And then, each chromosome’s representation

1—0(x) 2

Gaussian pdf Q(x) approximation
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Fig. 2. The Q(x) for a fitness mapping,

of the variable must be converted to real numbers in an appropriate
range. Each allele is represented in binary code, so we can get
decimal value between O and 2/-1 where / is the chromosome
length. And then, to map this decimal value into teal one, we
can use the below linear function to map linearly from the
integer region [imn imx] to the real domain [Fu, Fmadl.

Ymax ~ Vmin -
e T gy, 3

Zmax ~ Ymin

y =
where, i =0, .. =2'—1

For more accurate r precision, the chromosome length will be
large enough. However, with a longer chromosome, GAs find
difficulty in reaching a near optimum, since a genetic search
exploits schemata which represent hyperplanes, and an increase
in the size of chromosome increases the amount of space that
the algorithm needs to explore to find good schemata. Since the
optimal population size is a function of the chromosome length
for better schema processing, increasing the chromosome length
may incur bigger size of population which leads to inefficiency
in view of computation memory and time. Therefore, you should
be determine the appropriate chromosome length with regard to
the size of population.

Encoding procedure is vice versa. In these examples, the
chromosome length is 15 so, the precision of the region is given
as 6.1X107. The reproduction and crossover method used in this
example are remainder stochastic sampling with replacement and
two-point crossover, respectively. And, for a fitness scaling the
lingarization method is used.

Fig. 3 shows the fitness values from the proposed error
distribution processing. Since all the fitness values in any epoch
can be determined by the error distribution function such as, g,
b, ¢ and d, the average fitness value has near 0.5. All errors in
epoch 10 has an a-distributed population and fitness mapping is
carried out with distribution curve a. In each epoch, fitness map-
ping from the errors is carried out according to thier distribution
curve. In this processing, the convergence can be checked by
whether an error of maximally fitted string lies within error tolerance.
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Fig. 4. The function value vs epoch in genetic optimization.

order terms inside the trigonometric function. In this case, well-
known calculus-based approaches fail to find the global points

Fig. 3. The fitness value with the Q function. » and, if ever it does, it would have a very complex and elaborate
: procedure.
Table 1. Comparison between numerical methods and proposed ’
GAs : minimize
teration function values epoch V (1=, x,5in (500x9)) *+ (1 — 2,5 cos (500x))*
quasi-Newion DFP proposed GAs in GAs 2 . ©
4 1.71442 1.71442 0.03634 4 . i
11 0.68091. 0.68091 0.01462 11 subject to —1 < x =1, —l<x=l
16 0.67884 . 0.67890 0.01632 16

Fig. 4 shows that even a multimodal case GAs can find

23 0.54227 0.31334 0.00170 23 ) B i )
26 026496 024227 0.00169 26 optima thh' simple but powerful IFICI]' operations. In .thg early
epochs within 100, GAs find candidates near the optima, after
31 . 0.11665 0.20201 0.00535 .31 . . . .
that, converge to one point with most potential candidate. From
37 0.02017 0.04720 0.00036 37 . . P o
: this experiment, an applicability to the power system optimi-
42 0.01810 0.04092 - 0.00093 © 42, . . . . . .
zation which always have trouble with the multiple solutions is
30 0.00803 ’ 0.03342 0.00125 30 proved even if it contains nonlinear algebraic equations which
6 - 0.00690 0.00472 0'90076 56 should be resolved with an exact solution. However, to resolve a
61 0.00524 0‘001_47 0.00060 ,6'1 more complicated problem in a power system, further considera-
67 0.00101 0.02466 0.00052 67 tions for the GAs dynamics. remain also.
72 0.00067 0.00231 0.00067 72 )
77 0.00031 0.00027 0.00019 77 M. The Power Flow USil]lg GAs
82 ~0.00016 0.00013 0.00010 78
87 0.00009 0.00010 In the power flow which is primarily concerned with calcula-
ting complex. power flowing throughout the transmission networks,
For a comparison, the quasi-Newton method and DFP method the voltage magnitude and phase angle of the slack bus are
are used. The initial point for the numerical process is given as dependent variables and, voltage magnitude of the generator bus
(-1, 2.5) and, the global minimum is (0.5534, 2.1243). Table 1 is specified in advance. Therefore, in a n-bus system, the total
shows the comparative results with proposed GAs. The results number of independent variable is 2n-(2s+g) where, s is the
imply that GAs can have pretty good outcome over the well- - number of slack bus and, g is the number of generator bus. If
known numerical methods in a specified region. ‘ we did not consider reactive power constraints in generator bus
V for brevity of the problem, the objective function can be formu-
2) A Multimodal Case lated as follows. ’

Equation (6) contains many local minima because of the high
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minimize
5/ 4P+ T (4Q)° )
ixslck i= load . .
n i= 1.2, m @

subject to 4P, = Py — p.
4Q; = QP — Q.

(v, &)

Qn = g(V, &)

N : number of independent variables

where, Py =

In order to use GAs for the power flow problem, the first
step is to encode the independent variable to the chromosome
with an appropriate length. And then, a fitness function must be
prescribed for better selection of the chromosome in reproduction
process. The chromosome structure could be organized, as shown
in Fig. 5. First, every independent variable is represented in one
chromosome, and it is operated within one population pool.
Secondly, changing the position of the independent variable is
another kind of chromosome structure. In a third, taking up two
population pool, the Vi (voltage magnitude) chromosome and the
5; (phase angle) chromosome can be operated separately. Finally,
with multi-population pool about the independent variable, each
chromosome is operated respectively.

To quantify the effectiveness of GAs and inspect the conver-
gence, the performance measure M is given by

S FL(V, &)
M= ®

where, F/.(V,8) : payoff with max fitness in epoch ¢
T : predefined number of epoch

In words, this performance is an average evaluation of the objec-
tive function up to the current epoch. In this paper, this measure
is used to determine the optimal genetic control parameter sets.

IV. The Case Study

For the case study, 5-bus, 14-bus and 25-bus systems are

selected. Fig. 6 summarizes the working of power flow compu-
tation using GAs represented in pseudo-C code.

Through the experiments, the states when the population size
300, crossover rate 1.0 or 0.8 and, mutation .rate 0.001 or 0.0005
turn out to be proper. The remainder stochastic sampling without
replacement where added on the elite population at the rate of
0.01 and two-point crossover occurred on the unit chromosome
are used.

Fig. 7 and 8 show_all the errors in the population pool where
the randomly selected epoch have the Gaussian pdf characteri-
stics. These characteristics validate the propriety of the proposed
fitness mapping. In Fig. 7, the negative side of the normalized
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V population pool :

& population pool

©
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where, i = bus index
()]

Fig. 5. Chromosome structure for the variable encoding.

void main(void)
{
int epoch;

randomize_module(independent_variables);

for (epoch=1; epoch < MAX_EPOCH; epoch++) {
GAs_process_module(objective_function);
if (acceptable_errors)

power_flow_module(independent_variables);

Fig. 6. Power flow procedure in pseudo-C code.

Gaussian PDF in Epoch 5
(5-bus systern)

mean error : 0.4414
sigma : 0.2127

f_X(error)

normalized & sorted error

Fig. 7. The 5th epochal population state in 5-bus system.

and sorted errors is to be higher fitness than the average. Fig. 8
implies that all the chromosomes have an identical payoff value
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Fig. 8. The 55th epochal population state in 5-bus system.

Table 2. Cor'nplex-pow_er flowing report using proposed GAs in
14-bus system. 7

===========POWER FLOWS============POWER LOSSES=

P_tran Q_tran [Bus-Bus] P_tran - Q_tran P_loss Q_loss

1.5450 -0.1985 [ 12 '} -1.503y 0.2672 0.0417  0.068
07867 -0.1803 [ 15 ] -0.7558 0.2522 -0.0309 0.0719
07106 00378 [ 23 ] -0.6887 0.0082 0.0219 0.0460
05593 02372 [ 24 ] -05401 02540 0.0191 0.0168
- 04172 02633 [ 25 ] -04050 0.2627 0.0122 -0.0006
1202530 -0.1865 [ 34 .] 02590 0.1650 0.0061 -0.0214
06378 00574 [ 45 1 06427 00584 00049 0.0011
02813 00031 [ 47 ] -02813 00179 0.0000 0.0148
0.1594 0.0363-{ 49 ] -0.1594 -0.0230 0.0000 0.0133
04431 00057 [ 5 6] 04431 00379 0.0000 0.0435
00738 00711 [ 6 11 ] -0.0730 -0.0692 0.0009 0.0018
00789 0.0296 [ 6 12] -0.0782 -0.0280 0.0008 0.0016
0.1783 0.0904 [ 6 13 ] -0.1760 -0.0859 0.0023 0.0045
0.0000 0.1926 [ 7 8 ]v 0.0000 0.1985 0.0000 0.0058
02812 01752 [ 79 ] -02812 -0.1644 0.0000 0.0108
0.0524 0.0076 [ 9 10] -0.0523 -0.0074 0.0001 0.0002
00927 00139 [ 9 14] -0.0917 -0.0117 0.0010 0.0022
-0.0378 0.0506 [ 10 11 ] 0.0381 0.0513 0.0003 0.0007

00172 0.0120 [ 1213 ] -00171 -0.0120 0.0001 0.0001
0.0582 0.0399 [ 13 14 ] -0.0574 -0.0383 0.0008 0.0016

N.B. Line and bus input data are presented in Appendix.

as the GAs converge. This phenomenon seems to conform to the
building blocks hypothesis.

Major concems on GAs mechanics in this paper can be
enumerated, as follows. First, the effects as the modification of
the chromosome structure are presented and their major results
are analyzed. Secondly, the optimal choice of the genetic control

Fitness vs. Epoch
{5-bus system; using the Q function)

8
g2 05 - -
L P ----|population sizg: 300 |._.
03 elite population size : 3|
- string length : 20
S X | crossover rate : 1.0 o
L mutation rate : 0.001  [---
[ ittt s e et s U L
. 85
Epoch
. r— n'raximumvfithess -------- average fitness "

Fig. 9. The fitness value in 5-bus system.

Change of Crossover Method
{5-bus system)

0.20

0.18

0163 f+o:
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=3
e

0,00 T T T T T T T T T T T TR

' Epoch V

.Fig.r 10. On-line performaﬁcé with chzinging thé >cr‘ovssover method

(5-bus).

Complex power flowing of 14-bus system is presented in Table
2. Table 3 shows the bus states comparison between Newton-
Raphson method and GAs in the 25-bus system. You can see
that genetic power flow which operates not using the derivative
information eg. Jacobian matrix construction but using random
genetic processing has the comparable outcomes to that of
Newton-Raphson’s. From above case studies, the fitness mapping
based on error distribution has a validity on GAs processing.
Table 4 shows on-line performance M and computation time
with pentium-133MHz CPU in the genetic power flow where
population size 300, chromosome length 25, P, 0.95 and P, 0.003.
The remainder stochastic sampling without replacement where
added on the elite population at the rate of 0.01 and two-point
crossover occurred on the unit chromosome are used in this
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Table 3. Bus states(voltages) comparison between N-R and GAs in the 25-bus system.

[ Newton-Raphson Method ]

[ Proposed GAs ]

57

=BUSES— Initial =——Optimized=—= Initial =Optimized=—
[ #] Type Mag Ang Mag Ang Mag Ang Mag Ang

[ 1] LOAD 1.0000 0.0000 1.0371 -0.1120 M_RAN A_RAN 1.0351 -0.1120
[ 2] LOAD 1.0000 0.0000 1.0373 -0.0590 M_RAN A_RAN 1.0373 -0.05%0
[ 3} LOAD 1.0000 0.0000 1.6099 -0.0463 M_RAN A_RAN 1.0199 -0.0463
[ 4] LOAD 1.0000 0.0000 1.0302 0.0935 M_RAN A_RAN 1.0302 0.0935
{ 5] LOAD 1.0000 0.0000 1.0387 0.0561 M_RAN A_RAN 1.0387 0.0561
[ 6] LOAD 1.0000 0.0000 1.0492 0.0570 M_RAN A_RAN 1.0492 0.0470
[ 7] LOAD 1.0000 0.0000 1.0459 0.0549 M_RAN A_RAN 1.0412 0.0749
[ 8 LOAD 1.0000 0.0000 1.0369 -0.0600 M_RAN A_RAN 1.0669 -0.0300
[ 9] LOAD 1.0000 0.0000 0.9980 -0.0315 M_RAN A_RAN 1.0030 -0.0415
[ 10} LOAD 1.0000 0.0000 1.0339 -0.1228 M_RAN A_RAN 1.0339 -0.1285
{ 11] LOAD 1.0000 0.0000 1.0375 00123 M_RAN A_RAN 1.0375 0.0321
[ 12] LOAD 1.0000 0.0000 1.0290 0.0885 M_RAN A_RAN 1.0291 0.0885
[ 13] LOAD 1.0000 0.0000 0.9974 -0.0490 M_RAN A_RAN 0.9974 -0.0490
[ 14] GENE 1.0500 0.0000 1.0500 0.1088 1.0500 A_RAN 1.0500 0.1088
[ 15] GENE 1.0500 0.0000 1.0500 0.1472 1.0500 A_RAN 1.0500 0.1472
[ 16] GENE 1.0500 0.0000 1.0500 -0.0235 1.0500 A_RAN 1.0500 -0.0235
[ 17] GENE 1.0500 0.0000 1.0500 0.1530 1.0500 A_RAN 1.0500 0.1530
[ 18] LOAD 1.0000 0.0000 1.0439 0.0759 M_RAN A_RAN 1.0439 0.0759
{ 19] LOAD 1.6000 0.0000 1.0478 0.0766 M_RAN A_RAN 1.0378 0.0746
[ 20] LOAD 1.0000 0.0000 1.0348 -0.0828 M_RAN A_RAN 1.0148 -0,0828
[ 21] LOAD 1.0000 0.0000 1.0306 0.1015 M_RAN A_RAN 1.0396 -0.1415
[ 22] LOAD 1.0000 0.0000 1.0452 0.0018 M_RAN A_RAN 1.0438 0.0218
[ 23] LOAD 1.0000 0.0000 1.0456 0.0664 M_RAN A_RAN 1.0254 0.0664
[ 24] LOAD 1.0000 0.0000 1.0475 0.0496 M_RAN A_RAN 1.0472 0.0396
[ 25] SLCK 1.0500 0.0000 1.0500 0.0000 1.0500 0.0000 1.0500 0.0000

N.B. [ GAs Parameters ]
POP_SIZE = 300, Elite POP_SIZE = 3, CHROM_LEN = 25, CROSSOVER_RATE = 0.950,
MUTATION_RATE = 0.001, M_RAN RANGE : [0.90, 1.10], A_RAN RANGE : [-0.30, 0.30]

Remainder Stochastic Sampling Without Replacement, 2-Point Crossover,

Change of Fithess Scaling
(14-bus system)
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Fig. 11. On-line performance with fitness scaling (14-bus).

in this experiments. From the results of simulation, genetic power
flow which is calculated with the maximally fitted chromosome
can be useful when the on-line performance M is less than 0.45.

Major concerns on GAs mechanics in this paper can be
enumerated, as follows. First, the effects as the modification of

the chromosome structure are presented and their major results

Linear Fitness Scaling

Table 4. On-line performance M & computation time in genetic

power flow.
epoch system 5-bus 14-bus 25-bus
100 0.034 0.036 0.064
200 0.028 0.048 0.042
300 0.037 0.053 0.051
[min:sec.mili] [2:19.49] [5:01.31] [7:43.68]

are analyed. Secondly, the optimal choice of the genetic control
parameter sets such as population size, chromosome length, cross-
over rate and, mutation rate in our problem is determined by the
contemplated experiments. In a third, the effect of adding elite
population is considered. Finally, the various reproduction and
crossover mechanisms are compared and analyzed in order to get
the best performance from the GAs. ’

V. Conclusions

The key issues in this paper can be summarized in two ways.
First, in the genetic processing, the methodology of prescribing
the fimess function using the Q function defined from the Gaussian
cdf is presented. Secondly, the proposed method is applied to
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calculate the power flow in sample systems and, the results of
computational experiments suggest an applicability of GAs to the
more complex power system problems.

In genetic power flow, we obtain a comparable result to that
of Newton-Raphson but it consumes much computation time in
encoding and decoding procedures. The result of case studies
suggests us a direct applicability of GAs to complicated numerical
problem even if it contains nonlinear algebraic equations as a
constraint. Further considerations remain for an exact description

of GAs dynamics and brevity in .genetic representation which

can directly affect on the fast and robust processing of GAs.

Appendix
Table A.1. 14-bus system line data.

Bus - Bus R | x| %2 Tap

1 2 001938 005917 - 0.02640 1.00000
1 5 0.05403 0.22304 0.02460 " 1.00000
2 3 0.04699 0.19797 0.02190 1.00000
2 4 0.05811 0.17632 0.01870 1:00000
2 5 0.05695 0.17388 0.01700 1:00000
3 -4 0.06701 0.17103 0.01730 1.00000
4 s 001335 . 0.04211 0.00640 1.00000
4 7 000000 - 020912 000000 097800
4 9 0.00000 0.55618 0.00000 0.96900
5 6 0.00000 025202 0.00000 0.93200
6 11 0.09498 0.19890 000000  1.00000
6 12 0.12291 0.25581 0.00000 1.00000
6 13 0.06615 0.13027 0.00000 1.00000
7 8 0.00000 -  0:17615 0.00000 - 1.00000
7 9 000000  0.11001 0.00000 1.00000
9 10 0.03181 0.08450 0.00000 1.00000,
9 14 0.12711 027038 0.00000 1.00000
10 11 0.08205 0.19207 000000  1.00000.
12 13 0.22092 0.19988 0.00000 - 1.00000
13 14 017093°  0.34802 0.00000 1.00000

Table A.2. 14-bus system input bus data for the GAs process.

Bush|Bus Type | Vi | Vo | Pem | Qur | Pis | Qua
1 Slack 1.0600 0.0000 2.3240 -0.1690 0.0000 0.0000
2 Generator 1.0450 A_RAN 04000 04240 02170 0.1270
3 Generator 1.0100 A_RAN 0.0000 02340 09420 0.1900
4 Load  M_RAN A_RAN 0.0000 0.0000 04780 -0.0390
5 Load M_RAN A_RAN 0.0000 0.0000 0.0760 0.0160
6  Generator 10700 A_RAN 0.0000 0.1220 0.1120 0.0750
7
8
9

Load M_RAN A_RAN 00000 0.0000 0.0000 0.0000
Generator  1.0900 A_R4N 0.0000 0.1740 0.0000 0.0000
Load -M_RAN A_RAN 0.0000 00000 02950 0.1660

10 Load M_RAN A_RAN 0.0000 0.0000 0.0900 0.0580
11 Load M_RAN A_RAN 0.0000 0.0000 0.0350 0.0180
12 Load M_RAN A_RAN 0.0000. 0.0(_)00 0.0610 0.0160
13 Load M_RAN A_RAN (00000 00000 0.1350 0.0580
14 Load M_RAN A_RAN 00000 0.0000 0.14%0 0.0500

M_RAN, A_RAN : random number within a specified range
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