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Abstract

In this paper, a general fuzzy syntactic method for recognition of flaw patterns and for the measurement of flaw characteristic

parameters from a non-destructive inspection signal, called eddy-current, is presented. Solutions are given to the subtasks of primitive

pattern selection, signal to symbol transformation, pattern grammar formulation, and event-synchronous flaw pattern extraction based on

the grammars. Fuzzy attribute grammars are used as the model for the pattern grammar because of their descriptive power in the face of

uncertain constraints caused by noise or distortion in the signal waveform, due to their ability to handle syntactic as well as semantic

information. This approach has been implemented and the performance of the resultant system has been evaluated using a library of flaw

patterns obtained from steam generator tubes in nuclear power plants by an eddy current-based non-destructive inspection method.

I. Introduction

The signal pattern recognition problems in material health
monitoring . applications, called Non-Destructive Evaluation (NDE)
[1, 2], are very complicated tasks compared to general object
pattern recognition problems. The pattern recognizer should extract
interesting signal patterns caused by shape distortion from the
continuously displayed signal waveform, and should then evalua-
te whether the distortion is caused by defect factors[1]. Recently,
demand for increased material performance has led to more
stringent requirements for detailed information about the detected
harmful flaws in several NDE applications[1-3]. Merely finding
the precise flaw location is not sufficient in many situations;
defect size, shape, orientation, source and impact of the flaw on
material properties should be determined so that reliability and
productivity of the inspection process can be enhanced.

To solve these problems in NDE applications, much work on
developing an automated defect signal identification and evalua-
tion system has been reported[1-7]. However, much of the initial

- effort was purely numerical, using statistical pattern recognition
techniques such as cluster analysis and template matching. Results
of these early attempts were generally disappointing, mainly
because of their failure to exploit such domain-specific character-
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istics as the structural knowledge induced from the physiéal struc-
ture of the tested material or to adopt appropriate mechanisms for
handling the uncertainties resulting from the nature of the signal
waveforms.

Eddy Current Testing (ECT)[2] is an important NDE technique
with the characteristics mentioned above. ECT is widely used to
detect anomalies in tubes used in nuclear power plants (NPP).
Conventionally, ECT is done by human inspectors who must
scrutinize a time-varying continuous signal waveform displayed
on a screen to detect flaw signal patterns and classify them.
Because of the high cost of manual inspection and the varying
capabilities of the inspectors, some attempts to automate ECT
signal inspections have been made[3-8]. .

In this paper, we propose a generalized fuzzy symbolic model
to represent the ECT signal and a corresponding fuzzy syntactic
pattern analysis framework to make problem-solving in this area
an easier task. Many syntactic pattern recognition approaches’to
waveform analysis in one dimension already been applied to
electro-cardiogram, well-log and seismic applications[10, 11].
However, because of the need to extend the analysis noisy and
distorted shape, the proposed architecture exploits a new fuzzy
syntactic pattern recognition framework by modifying and
enhancing the traditional syntactic pattern recognition approaches.

A brief description of ECT for inspecting the health of steam-
generator tubes in NPP is presented in the following section, and
the overall architecture of the proposed system is described in
section [. Detailed design and implementation of the proposed
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architecture is presented in the subsections following. Performance
analysis of a prototype implementation is considered in section
IV. Finally, section V contains concluding remarks and suggestions
for further research.

II. Brief Description of the Application

ECT[1, 2] is a material health monitoring technique using
eddy curmrents as the signal. The technique is especially effective
for rapid detection of cracks, seams, and other flaws in thin-
walled objects, and for sorting different materials in a given
batch. These features make inspection of tubes in a nuclear
power plant an excellent application of eddy current inspection.
To detect tube anomalies, which might allow leakage of radio-
active coolant, in a nuclear steam generator (SG), thousands of
tubes are inspected by certified human inspectors during the
annual inspection period of a nuclear power plant[2]. An eddy
current probe scanned over the surface of a tube under test
reacts to local variations caused by flaws, sludge, and roughness
of the surface. Responses to different material flaws appear in
the form of so-called eddy current Lissajous patterns in the
impedance plane. The Lissajous pattern displays different two-
dimensional contours according to the condition of the surface of
the tube. Its trajectory and shape are related to the flaw type,
and its lobe amplitude has a correlation with the flaw size.

Figure 1(a) shows the partial shape (a ‘U’ type) of a steam
generator tube, Figure 1(b) displays horizontal and vertical strip
signals, and Figure 1(c) shows various two-dimensional Lissajous
patterns formed by the two strip signals against the locations on
the tube. As shown in Figure 1(a), there are many plates, bars
and sheets on the outside of the tubes such as the support plate
(SP), aﬁti-vibration-bar (AVB), upper tube sheet (UTS) and
bottom tube sheet (BTS), which give some interference effects to
the raw signal.

When the probe is passed through these regions, the interfer-
ence effects show up as unusual Lissajous patterns, as shown in
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Fig. 1. ECT-based steam-generator tube inspection in NPP : (a)
a shape of a SG tube and indicated locations; (b) two
strip signals acquired from the tube; (c) temporal event
pattern displayed on a two-dimensional Lissajous screen.

Figure 1(c). Moreover, the regions which are affected by the inter-
ference objects are also subject to other signal distortion effects,
such as defects, sludge, dents, noise and probe wobbling. These '
regions are also prone to harmful flaws such as stress corrosion
cracking, pitting, wear-scar and denting in the SG tubes[1, 2].

M. Design of the Proposed Architecture

1. Overview

i Figure 2 illustrates the design concepts and the proposed
system architecture, which consists of a recognition part and a '
learning part. Since the recognition part is directly connected to
a real-time eddy current signal acquisition device, it executes a
series of subtasks to extract and analyze any flaw signal patterns
as a flaw event. ’
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Fig. 2. Functional block diagram of the proposed system.

The learning part utilizes several knowledge bases that contain
key information to extract and analyze flaw patterns obtained in
the recognition component. Elements in the learning part are
denoted by circles in Figure 2. The reasoning part is denoted by
a box. It processes input data using the knowledge prepared by
the learning part.

The first task is the preprocessing step for raw signals. This
employs signal processing techniques such as least square approx-
imation and median filtering to filter out noise factors in raw
signals (detailed discussion of these techniques is not given
here). The signal transformation function block in the recognition
part transforms the raw eddy current Lissajous signals into a
stream of pattern primitives. These are defined in the fuzzy
primitive definition block in the learning part. The syntactic
parsing block monitors and extracts pattern events which may - be
flaws, using a fuzzy syntactic grammar, which is defined in the
syntactic grammar function block. The classification block firstly
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classifies extracted events into predefined classes and secondly
reclassifies them according to whether they are harmful defect
events or not, using attribute parameters that are measured
synchronously in the parsing stage. The majority of extracted
events are filtered out in this stage and only events that are
definitely flaw suspects are sent to higher level evaluation steps.
Because these high level evaluation steps are strongly domain
dependent, we do not discuss them in this paper.

The proposed architecture can successfully perform input data
filtering as noted by the thick gray arrows in Figure 2. Because
of the filtering concept, the proposed system can detect and
evaluate flaw signal patterns from a continuously produced input
signal waveform in real time. Also, the separation of the two
parts simplifies complex problems in the signal inspection process,
and simplifies system maintenance. The following subsections
explain the details of the design concepts.

2. Primitive Pattern Definition and Transformation

This section describes the transformation of the signal to a
symbol stream. Because the shape, trajectory and amplitude of
the eddy current Lissajous signals are the main clues [2] for
detecting material flaw characteristics, the monitored signal is
modeled as concatenations of amplitude and shape of signal
segments. For the purpose of the transformation, we have defined
a set of transformation functions that are borrowed from conven-
tional two-dimensional shape analysis methods [9]. However,
because of the uncertainty characteristics of eddy current Lissajous
signals, we have designed a new signal representation model
based on fuzzy set theory [14-17].

Since the signals are represented by a sequence of symbols, a
signal model should define a set of symbol alphabets to
represent the application signal. Our signal representation model
has nine symbolic alphabets and each alphabet has fuzzy
membership values for the fuzzy property. To generate the fuzzy
symbolic alphabets, we have defined nine fuzzy membership func-
tions: eight functions inherited from Freeman’s eight directional
chain symbols [9] to represent the shape information as shown
in Figure 3(b), and one function to fuzzify the signal amplitude
information as shown in Figure 3(c).

In order to reflect the shape and amplitude of a signal
segment in the digitized raw signal as shown in Figure 3(a), two
parameters, Ak, and Av are extracted to calculate § and used
to generate the fuzzy symbol alphabet.

Because the eight fuzzy symbols in Figure 3(b) represent the
shape of the signals, the membership functions are defined using
tan( @) as the gradient of the signal segment (see Figure (3a)).
Therefore, the membership function yr(tan(#)) for any signal
segment having a positive value in the interval [0, 1] indicates
whether the segment is a member of the direction symbol ¥'=
{b, ¢, d, e, f, g h, i}. Similarly, the grade of membership
expressing whether a line segment lies in the direction a may be

(a) (b) ©

Fig. 3. Signal representation model: (a) transformation parameters
for a signal segment in a sample Lissajous pattern; (b)
eight fuzzy membership functions to represent the shape
of a signal segment; (c) a fuzzy membership function to
represent the amplitude of a signal segment.

expressed by the function shown in the Figure 3(c). This
membership function is evaluated using AA and Av values. The
threshold levels for the signal amplitude (a, t1, 12, t3, and t4 in
Figure 3(c)) are constants defined when the fuzzy function is
tuned by calibration of the signal acquisition condition. The
membership values for the symbol a are used as a quantitative
measure of the amplitude to solve thresholding problems for the
signals as well as the degree of membership for the direction
symbol. Because two fuzzy functions in Figure 3(b) overlap
everywhere in a two-dimensional plane, the signals (S) are trans-
formed into the stream of fuzzy symbbls with their membership
values k:
S= ZZ:]l P*(7), n = number of signal segments

where the P and k are evaluated according the following rules:
case u,(=ea

PG ={Amax( u, (D), re B}, k= s (D% 12,()
case u,()<a :
P@="a,k=(- ga@)

where i is the entry number in a signal segment, ¥ = {b, c, d,
e, f, g, h, i}. Using the above rules, the raw signals such as
those shown in Figure 4(a) are transformed into a stream of
fuzzy symbols and their membership values as shown in Figure 4(b).

3. ‘Partern Grammar Definition and Parsing

Based on the stream of symbols described in the previous
section, a grammar can now be defined for constructing the
differentopattem classes found in the real input signals. In syn-
tactic pattern recognition, the task of recognition essentially amounts
to parsing a linguistic representation of the patterns to be recog-
nized, using a parser based on a so-called “pattern grammar” [9].
We have formulated a pattern grammar based on fuzzy attribute
grammars [14-16] for description of the Lissajous shapes of the
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Fig. 4. Example of signal to symbol string transformation: (a)
raw signal; (b) transformed fuzzy symbolic string.

eddy current signals, using a priori knowledge of the tested
material structure. The grammar knowledge base must include the
characteristics of all the sample pattern classes to be recognized.
As shown in Figure 1, the shapes of the event signals in our
application (nuclear’ SG tube) are categorized into many classes:
BTS (bottom tube- sheet), UTS (upper tube sheet), SP (support
plate), AVB (anti-vibration bar), etc. For simplicity, this paper
discusses only the AVB class event. A semantic rule associated
with a symaétic rule is used for computing the value of the
hypothesis expressed by the member of the syntactic rule on the
left-hand side as a function of the membership functions of the
components on the right-hand side. A set of fuzzy rules should
be inferred for defining a class of sample pattemns; for example,
the grammar rules for the AVB and SP class of the event in
Figure 3(a) are defined as follows:

" Definition 1:
The fuzzy attribute grammar, for capturing and classifying the
AVB event signals, is a 4-tuple

G=Wy Vr§ P
where

Vr={a b, c d e f g h,' i}, set of terminals such that
Vil V=0

Vv = {EVENT, AVB, D, H}, set of nonterminals, i.e., labels
of a certain fuzzy set on, called fuzzy syntactic categories, with
synthesized attribute sets followed by '; ',

S = {AVB], starting symbol , .

P, set of production rules as follows:

EvENT+L AvB (3))
s u(AVB), len( AVB), peak— peak( AVB)
Aave-L%p gD : ®2)
; len(D), len(H), ..
p-L0. 4 pa (p3, p4)
0.5

D20 De, Didd

(p3, o6, p7, P8)
9, pl0, pll, pl2)

D8y s by -

H-L0p mip (p13, pl4)
H-95, ¢ Hii Mg (p15, pl6, pl7, pis)

HLB, ¢ mp, A

(p19, p20, p21, p22)

In the definition, the syntactic production rule ” " means that
B allows us to generate the hypothesis that there is a pattern A
with plausibility of r. Each syntactic rule has associated semantic
rules followed by ;' and the semantic rules as shown in p2
have two types. One is the derivation equation to calculate the
possibility values. The semantic rules associated with the syntactic
definition of D can be. derived as follows.

In the case of (p4, p7, p8, pll, pl2):
wp={L.ON g IVOEAL 1V 2 INVO.2NC 1,V 1IN}

In the case of (p3, p5, p6, p%, plO):

/‘D={ (1.0 J7V4 IID))\/(O.S/\( g N NV #D)_
COVO0.BAC 4,V 1N up) '

Therefore, each start symbol such as AVB in Definition 1
evaluates its semantic meanings as follows:

#ave={ po/\ p g/ /lm}

The other type of semantic rule, such as peak-peak (AVB) in pl

~ rule, is the definition of structural parameters: these should be

measurements that characterize the event. A detailed description
of this issue is presented in section III. 5.

Figure 5 shows another grammar definition that describes SP
class objects and their actual shape in the Lissajous plane.

Thus, while parsing input streams, the predéﬁned grammar
rules such as Definition 1 are selectively fired according to a
precondition which is the expected information for the domain
model, such as the structure of the tested material, and a post
condition which is the look ahead symptom input. Using this pars-
ing method, the parser can effectively skip many of the signals
acquired in the regions in a tube, which is of no interest. In this way,
the performance of the proposed system can be greatly enhanced.

The results of the derivation are parse trees for each input
string as shown on the right-hand side of Figure 6. The parsing
system can capture any event patterns belonging to predefined
sample patterns regardless of whether these have defect charac-
teristics. It measures only the ratio of signal distortion by mani-
pulating the semantic constraint derivation mechanism. Parse trees
in Figure 6 show that the parser can capture not only normal

-signals but also abnormal ones using the same grammar. Finally,

the m values of AVB at the roots of the parse trees notify the
certainty values of the instance to the AVB class, and- these values

can be used as a measure of distortion ratio for the class instances.

“Therefore, using these values we.can determine whether any

event needs further evaluation. For example, if the m value of
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(a) Sample Pattern(SP class)

(b) Grammatical Representanon
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Fig. 5. (a) shape of signal pattern in SP class; (b) grammar defini-
tion for the SP class.
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Fig. 6. Parsing examples for: (a) a normal AVB signal; (b) an
AVB signal with defect.

an AVB instance is 0.99, it means that the shape and amplitude

of the instance include only a little distortion, therefore, additional
evaluation is unnecessary. The system performance can easily be
increased because most of the extracted events are filtered out in

this stage.

4. Parsing Algorithm

The structure of the hierarchical parsing procedure is depicted
in Figure 7. At each stage context-free grammars such as those
in Definition 1 or Figure 4(b) have been used. Let x denote the
fuzzy symbol string for input signals.

event
panern

C (C:l
G, va G 7&-:
Froo-

Zono
SP BP TS_TOP MHappr \,.“ o

Pitting
xx1 xx2

Fig. 7. The hierarchical parsing scheme.

Algorithm:

Stage 1: (primary classification): We define five classes Ci, i =
1,2,..,n as C; = {AVB, FreeZone_Pitiing}, C; = {SP, BP}, C; =
{TS_TOP), C, = {TS_END}, Cs = {FreeZone_Dent}, ..., C, = {,,.}.

Let Gi denote the grammar corresponding to class Ci and
L(Gi) the language generated by Gi.

If x is found to be the empty string( ), halt parsing.

If not, and if x is parsed by the first stage grammar, then

. M
x€ cLOG ), I prcyw= lsfén trey(x), k= 12,..n

If x¢ -.L( G,)¢ and i = class group has only one class then

stop; otherwise go to the second stage.

Stage 2: We come here if there are contradictory decisions in
the first stage xe L( G;) or x€ L( G,). We now bring sub-

grammar Gy into the string then :

x€ cLLG ). if pricyw= lgla_sxn ¢r(cp(x), k=1,2,..n and j

denote the class which has several subclasses
If xe -L( G;), where x belongs to a subclass k in j parent

class; then stop, otherwise go to the third stage.

Stage 3: Some Gj define a number of semantic attributes as
shown in Definition 1 or Figure 3(b). The values of the semantic
attribute used as the three stage classification rules as followed:

Ui =maxl #1cy(x), a0 e 2& LLGy)

In this stage, the classification is not, strictly speaking, syntactic
in nature but the syntactic parser helps to get the values of the
semantic attributes using the proper grammar firing sequence.
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5. Parameter Measurement and Classification

By the guidance of the syntactic parsing scheme mentioned in
previous sections, the structural parameters in event patterns can
be measured in real time. Figure 8 shows the event attribute
parameters that are extracted from the parsing stage and that are
used as the decision criteria to classify the features of the flaws,

Vmax _|

<r2ir2|

Hmax

- Vmin

Fig. 8. The meaning of event attributes parameters.

For example, shape description parameters such as Vmax,
.Vmin, Hmax, Hmin, and trajectories of subevents are used to
classify the flaw types, and amplitude parameters such as < r, |r,
< rl, < 12 are used to evaluate the depth of flaws in the tested
materials. There -are many other considerations not described in
Figure 8, such as material property, location of the flaw and pre-
vious inspection data, which are taken into account in deciding
whether an event is-a harmful flaw. These are not part of the
scope of this paper but should be included in higher level
evaluations such as a knowledge base evaluation step using an
expert system andfor a neural network [3].

IV. Implementation and Experimental Results

We had previously déveloped a flaw pattern recognition system
implemented using a crisp syntactic pattern recognition approach
[5]. However, this system extracted too excessive ‘events to reduce
the task of human inspectors and was vulnerable to noisy input
data. To solve the problems in the old system, a new prototype has
been developed based on the fuzzy syntactic pattern recognition
concepts proposed in this paper. The new prototype was fully
implemented in C/C++ under Windows95. The prototype can
process ECT signals of any SG tube very quickly, requiring 2
sec/channel, compared with about 1 min/channel for a human
inspector. This performance makes it possible to implement the
proposed concepts in a PC-based automatic ECT signal insj;)ection
system in a real-time environment. We have experimented with
this system using hundreds of field data sets collected during
inspections by a qualified human inspector. In each experiment,

for each pattern class, 1000 patterns were pfepared as test
samples from field data. The test. samples consisted of 250
Samples with harmful flaws, 250 samples with harmiess flaw
signal patterns and 500 trivial samples that had no relation to
the tested class. To verify the experimental results, several human
inspectors with a certification of LEVEL II class expert [2]
participated in the experiments. Table 1 illustrates the average
results of the experiments.

As shown in Table 1, the prototype system caught all indi-
cated events although it overestimated in some cases. On the other
hand, the human inspectors frequently missed events, particularly
small-scale ones. For relatively large-scale and simple shape events
such as BP or SP, the evaluation results between two decision
makers were comparable. Because UTS signal patterns produce
complex Lissajous contours due to the composition of several
distortion factors, the results of the proposed system were slight-
ly worse for that class than the human inspectors. However, the
overextraction ratio of suspected flaw events was reduced to below
30% compared with over 70% on average with the old system [5].
The remaining overestimation can be reduced by adding a dedicated
domain-specific knowledge-based classifier for each signal pattern.

Table 1. Experimental results for harmful flaws in indicated

regions.
400
350
300 ————
250 . ] A "D #of actual flaws
200 - - fi ! O human
}gg : : : : ' ‘B prototype
50 —{ |
o . 1
a (2] (23 = ~N
s3] 5 E o w

AVB (anti-vibration bar), SP (support-plate), BP (baffle plate), UTS
(upper tube sheet), BTS (bottom tube sheet), UL (u-band limit), FZ
(free-zone defects)

In spite of the problem of overestimation, the experiment has
demonstrated that the proposed system can be used in field
situations as an automated flaw extraction and evaluation tool
and can enhance the productivity and reliability of human
inspectors. Because such systems are critical for safety in nuclear
power plants, the reliable detection of flaw signal patterns is the
most important criterion, rather than performance factors such as
overestimation ratio or speed.

V. Conclusion

The proposed architecture incorporates the two main character-
istics of the behavior of human inspectors. The first of these is
the use of shape and trajectory of the signal pattern as the main
clues in detecting flaw symptoms, and the other is that human
inspectors only pay attention to designated signal portions in the
huge amount of contiguously displayed signal data.
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The fuzzy symbolic representation of signal data could success-
fully represent the shape and trajectory properties of ECT signals
in spite of including noise and shape distortion problems. The
proposed data-driven parser was designed to reproduce the second
characteristic of the human inspectors behavior by implementing
an elimination scheme for those signal portions that do not
indicate events. This scheme allows the performance of the
proposed system to be maximized.

The flaw detection capability of the prototype achieves better
results than those of even experienced inspectors because the
prototype never misses any flaw signal patterns even when the
scale of the flaw is small, whereas human inspectors show
varying capabilities for such patterns. However, the analytic capa-
bility of the prototype is not superior to human capability because
the current prototype produces about 20~30% of overestimated
event patterns that areé not indicated by human inspectors. The
overestimation ratio will be reduced drastically by extending the
prototype to a multi-channel parsing architecture, and by adopting
further domain-specific knowledge processing concepts such as
expert system or neural network approaches at the high level
evaluation stages.
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