JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 4, 1997 37

Analysing Performance Characteristics of
Dynamic Signature File Methods

Jae-Soo Yoo, Kil-Seong Choi, and Myoung-Ho Kim

Abstract

With rapid increase of information requirements from various application areas, there has been much research on dynamic information

storage structures that effectively support insertions, deletions and updates. In this paper we evaluate the performance of the existing

dynamic signature file methods such as the S-tree, Quick Filter and HS file and provide guidelines for the most effective usage to a

given operational environment. We derive analytic performance evaluation models of the storage structures based on retrieval time, storage

overhead - and insertion time. We also perform extensive experiments with various data distributions such as uniform, normal and

exponential distributions. The relationships among various performance parameters are thoroughly investigated. We show through perfor-

mance comparison based on analytic models and experiments that regardless of data distribution, the HS file significantly improves

performance in both the retrieval time and the storage overhead over S-tree and Quick Filter.

1. Introduction

Information retrieval and management have long been major
fields of computing. This is evident from the rapid development
and widespread use of database management systems, which are
well suited for a variety of business applications. These appli-
cations typically deal with formatted data. However, there are
many recent applications in which a large amount of data are
unformatted, such as office information systems, geographical
information systems, library systems, CAD/CAM systems and
multimedia database systems[3, 4]. For example, a message in
office information systems consists of a header and a body[2].
The header contains formatted data representing the important
characteristics of the messages, e.g., sender, date, destination, etc.
The body is composed of unformatted data such as series of
words, graphics and images. An approach widely advocated for
efficient retrieval of unformatted data such as text and image data
is to use the signature file method, which has been shown to be
effective for textual data processing[9].

The signature file is an abstraction of documents, which has
been extensively studied as a storage structure for unformatted
data such as texts or documents[9]. Since the size of the signa-

ture file is much smaller than that of a data file, the signature

Manuscript received October 19, 1996; accepted June 16, 1997.

J. S. Yoo and K. S. Choi are with Dept. of Computer and Communication,
Chungbuk National University, Chungbuk, Korea.

M. H. Kim is with Dept. of Computer Science, Korea Advanced Institute of
Science Technology, Taejon, Korea.

file can effectively work as a filter that immediately discards
most non-qualifying documents for a given query. Many studies
on the storage structure of the signature file have been made in
the past, but they are mainly used for static environments[11, 12,
1, 14]. Though there are certain applications having archival
nature, i.e., insertions are less frequent and updates/deletions are
seldom necessary, many applications in practice require a dynamic
information storage structure[16].

There are a few signature file techniques for dynamic environ-
ments. The S-tree proposed in[5] groups similar document
signatures in its terminal nodes, and then builds a B-tree-like
index structure on top of them. Since, however, the filtering capa-
bility of S-tree heavily depends on the query signature weight,
which is the number of bits set to ‘1’ in the query signature, its
performance degradation is quite significant for light query
signature weights[16]. It also has much space overhead. The
Quick Filter proposed in[16] uses partitioning principles based on
linear hashing, which tends to cluster the signatures having the
same suffixes (or prefixes) in the same page. However, it has’
the same problem of serious performance degradation for light
query signature weights as that in the S-tree. The hierarchical
signature(HS) file proposed in[15] is a height balanced multiway
tree that is a hierarchy of nodes containing signatures. It uses a
frame sliced approach[10] to leaf node construction to improve a
filtering effect of the signature file.

In this paper we evaluate the performance of those dynamic
signature file methods and address a guideline to choose the most
efficient information access scheme for a variety of environments.

38 YOO et al. : ANALYSING PERFORMANCE CHARACTERISTICS OF DYNAMIC SIGNATURE FILE METHODS

We first present an overview of the dynamic signature file methods
and develop their analytic performance cost models. We also
perform experiments for the HS file, S-tree and Quick Filter.
The experiments are perfénned with various data distributions
such as uniform, normal and exponential distributions. The 10,000
and 100,000 documents with various types of parameters and
queries are used. We compare their performance based on those
cost models and experiments. Finally, we provide guidelines for
the most effective usage to a given operational environment.

The remainder of this paper is organized as follows. In section
2, we describe an overview of the signature file and dynamic
signature file methods. In section 3, we develop analytic perfor-
mance models for the dynamic signature file methods and
compare their performances through those models. Section 4
performs experiments and shows that the experiments agree with
analytic models. In section .5, we summarize the signature file
implementation techniques with emphasis on their convenience
for the multimedia applications processed under different conditions.
Finally, conclusions are_described in section 6.

II. Signature Files

The main idea of the signature file access method is to derive
properties of documents, called signatures, and then store sequen-
tially them in a separate signature file. When processing a query,
the signature file is scanned and most of nonqualifying docu-
ments are discarded.

Although many "extraction methods for creating the signature
from a document have been proposed, most of the signature file
methods typically use superir"nposed coding. For example, suppose
that a document is represented by three words, i.e. “Database”,
“Document” and “Retrieval”. Figure 1 illustrates the construction
of a document signature using superimposed coding -when a
signature length is twelve, and the number of bits that are set to
‘1’ in a word signature is two. The method can deal with queries
on parts of words, but it does not preserve the sequencing of
information. The number of document descriptors is expected to
be constant for different documents or to have only small devi-
ation from constant value. Otherwise, document descriptors must
be divided into logical blocks, and this requires more book-
keeping for the signature comparison.

Document D = (Database, Document, Retrieval)

keywords Word Signature -
Database 0110 0000 0000
Document 0000 1000 0001
Retrieval 0001 0001 0000

Document Signature 0111 1001 0001

Fig. 1. Document Signature construction using Superimposed Coding.

A retrieval procedure using a signature file is as follows.
Words in a query are first hashed to form a query signature by
the same way used for the document signature. If every bit that
is set in the query -signature is also set in the document signa-
ture, then the document signature becomes a potential match.
Superimposed coding can result in a false match because a
document signature can qualify a query signature, though the
document itself does not satisfy the query. A signature extraction
method that reduces the number of false matches is also
important, but is not the main concern of this paper.

A few works have been made to enhance the basic form of
the signature file for the dynamic environments. They include
the S-tree, Quick Filter and HS file, which are described below.

1. S-tree

The S-tree is a dynamic tree organization of signatures[5]. An
S-tree groups similar document signatures in its terminal nodes
and then builds a B-tree-like index structure on top of them.
Even though the deletion requires some extra effort, the S-tree
works well and always remains balanced. The filtering capability
of an S-tree heavily depends on the query signature weight,
which is the number of bits set to ‘1’ in the query signature.
Thus, while the S-tree achieves very good performance for the
heavy query weights, its performance degradation is quite signifi-
cant for light query signature weights[16]. It also has much
space overhead.

2. Quick Filter

The Quick Filter uses partitioning principles based on linear
hashing for organizing and searching for the dynamic data
file[16]. This method tends to cluster the document signatures
having the same suffixes (or prefixes) in the same page.

The Quick Filter parﬁtions a set of document signatures into n
pages, where 2" ¢(n < 2" for some integer h. The document
signatures with the same h-bit suffix are stored into the same
primary page or its overflow page. When a document signature
S is stored in the Quick Filter, the associated hash split function
g(S, h, n)is as follows:

h—1 . h=1 R
g(S’ h, 7’!)= Zobs_,'Z R if ',_Z:Obs_,’Z {n

=

B2)
Z_:O b,_2', otherwise

Here, b; denotes i-th bit value of the signature and s denotes
signature size in bits. The hash function g takes the h or (h-1)
bit suffix of S and interprets it as a non-negative integer. The
value of g is always smaller than n and is used to determine an
addressable page where the signature S is to be stored. The
initial condition is h=0, n=1 and we define g(S, 0, 1) = 0.

Since the Quick Filter is- constructed based on linear hashing,
the important characteristic of this organization is that all signa-

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 4, 1997 39

tures in a page have the same suffix (or prefix) corresponding to
the level of hashing h. The Quick Filter has the advantage that
the more the number of bits set to ‘1’ in the query signature is,
the less the number of blocks accessed is. However, it has the
same problem of serious performance degradation for light query
signature weights as that in the S-tree.

3. HS File

The HS file is a height balanced multiway tree that is a
hierarchy of nodes containing signatures[15]. The HS file has
two types of nodes, namely a leaf node and a non-leaf node. It
uses the frame sliced approach[10] to leaf node construction to
improve a filtering effect of the signature file.

The HS file of type (b, bs, f) has the following properties,
where b; and b, are the blocking factors of a leaf node and a
non-leaf node respectively, and f is the number of frames in the
leaf node:

1. Each path from the root to any leaf node has the same
length.

2. A leaf node consists of f blocks and one pointer block.
Each leaf node has at most b; document signatures that are
stored into f frames, and b, pointers to the corresponding
documents.

3. A non-leaf node is composed of only one block. Each non-
leaf node has at most b, children and signature.

4. The signatures in the non-leaf nodes are constructed by super-
imposing the signatures contained in their child node.

II. Analytic Cost Model

In this section we develop analytic performance models of our
HS file[15], the quick Filter[16] and the S-tree[S]. The existing
dynamic signature file methods have not constructed the analytic
cost models to compare their performance in various environments.
As a result, we is to derive the analytic performance models,
which strongly substantiate our performance results and enable
the analytic cost models to be used for various types of environ-
ments that are difficult to be constructed for actual performance
experiments. The analytic performance models are derived based
on the characteristics of the methods presented in the [15, 16, 5].
Table 1 shows the notations and descriptions of the input and
design parameters. Now we will examine the performance mea-
sures for given input and design parameters. The measures we
are interested in are listed below:

* Rys, Rgr, Rsr : Number of disk block accesses on retrieval for
the HS file, the Quick Filter and the S-tree,
respectively.

* Ons, Ogr, Ost : Additional disk space(pages)for the HS file, the
Quick Filter and the S-tree, respectively.

 Iys, Ior, Ist : Number of disk block accesses on the inser-
tion of one document for the HS file, the
Quick Filter and the S-tree, respectively.

Table 1. Input/ Design Parameters.

Parameters Description
N Total number of documents
P Size of disk page(block) in bits
D Number of words per one document
Q Query signature
s Document signature size in bits
k Average document signature weight
f Number of frames in the HS file
m Number of bits set to "1’ by one word
n Number of addressable pages of the signature file
w Number of words in the query
c Number of distinct frames selected by each word
when constructing a document signature
t Size of pointer in bytes
h Height of the HS file
sh Height of the S-tree
1 Hashing level of the Quick Filter
b Blocking factor of a leaf node in the HS file
b; Blocking factor of a non-leaf node in the HS file,
a node in the S-tree and a page in the Quick Filter
If Average page(node) load factor of HS file, QuickFilter, S-tree

W(Q) | Query weight, i.e., the number of ones in the query signature
B@) Expected utilization of the level i in the HS file and S-tree

A@) Cardinality in the level i

p(x,i) | Probability that x prespecified positions contain ones in the level i

1. Retrieval Time

To estimate the retrieval performance we assume that a query
with w words should be processed and the document signatures
follow uniform distribution. For the analysis, we make use of
the following measures for searching the signature file as well as
retrieving qualifying documents.

Ruontcsf Number of accessed disk blocks when accessing non-

leaf nodes for a given query in the HS file. This is
k=2 d d

computed as ?:='1(glﬁ(z)p(w*m,z))+l. L[lﬂ(z')p(w*m,i) is .

the average number of matched signatures in the height

d. The p(w*m,i) is also computed as (1——(1———5)“”}“’"”
N
B3

and the A(») and p(;) are calculated as and

=1
(byrif) for i=1, 2, -+, h-2, respectively.
Ricar Number of accessed disk blocks when accessing leaf

nodes for a given query in the HS file. This is compu-
ted as T (Adparm, D1 -1 —L)9x0).
Here, f*(l—(l—%,)‘") is the average number of dis-

tinct frames selected. »
R. Expected number of bits set in the 1-bit suffix of the

query signature.

40 . YOO et al. : ANALYSING PERFORMANCE CHARACTERISTICS OF DYNAMIC SIGNATURE FILE METHODS

o min (L, K Q)
This is computed as 21 (7*P(j)).
p= ,

Here, P(j) is the probability that j bits are set in the
1-bit suffix of the query signature and can be written as

(5—1_‘)(Q |

(o)

Q).

Riode Number of accessed disk blocks when accessing nodes
except root node for a given query in the S-tree.

This is computed as S;Y‘_;,ll(li[lﬂ(z')p(w*m, 0)-

Ii(B wrm,)) is the number of matched signatures
at depth d. '

According to these measures, we can calculate the retrieval
times of the HS file, Quick Filter and S-tree as follows:

Rus = Rnonteat + Rieaf

Rer = S
Rst = Raode + 1

2. Storage Overhead

In addition, we make use of the following measures for esti-

mation the storage overhead needed to maintain the signature file.

Oreat Additional storage space for maintaining the leaf nodes
in the HS file.

This is computed as [-b*‘%?(uﬂ].

Osnonteat Additional storage space for maintaining the superior
non-leaf nodes of leaf nodes in the HS file. This is

computed as [%] here, the Bo is [_b—}i]ff]
1

Ononeof Additional storage space for maintaining the non-leaf

nodes except superior non-leaf nodes in the HS file.

This is computed as }'f)z [5 *"1/ .

Here, the Bi is] for each i=1, 2, -, h-2.

b lf
 Osiess Additional storage space for mamtammg the leaf nodes
in the S-tree.

“This is computed as[b *lf]

Osnon-lear Additional storage space for maintaining the non-leaf
nodes in the S-tree.

This is computed as Z [b *lf
2

Here, the So is] and the 'Si is

[byxlf
i=1, 2, -+, sh-2.

by lf] for each

According to these measures, we can calculate the storage
overheads of the HS file, Quick Filter and S-tree as follows :

Ous = Otear + Osnon-tear * Onon-leaf

= _N_
Oqr Bo* 7

Ost = Osieat + Osnon-leat
3. Insertion Time

We can calculate the insertion tirﬁes of the HS file, Quick
Filter and S-tree as follows :

Iis=2(h+H—1+a), where h is estimated as [log ,., N +1, and
2
@, is the average number of accessed blocks to reorganize the file

when an overflow- occurs. The ¢, is estimated as [—"ibtl]
1
I,s=2+a,; where a, is the average number of overflow pages

accessed when insening one document and is estimated as [Tl]
2

Isr=2sh+a;, where sh is at most [log, M —1, and o5 is the
average number of accessed nodes to reorganize the file when

an overflow occurs. The @y is estimated as [b]
2

4. Performance Comparison

We compare the performance of the HS file with the S-tree
and the Quick Filter using the developed analytic cost models.
The values of each input and design parameter are presented in
Table 2 and are based on [14].

Table 2. The values for parameters.

methods . . .
HS File Quick Filter S-tree
parameters
10,000 10,000 10,000
N 100,000 100,000 100,000
P 1 Kbytes 1 Kbytes 1 Kbytes
2 Kbytes 2 Kbytes 2 Kbytes
D 20 20 20
f 2, 4,8, 16 NA NA
m 16 16 16
w 2 ~ 10 2 ~ 10 2 ~10
t 4 4 4
512 bits 512 bits 512 bits
|3 240 bits 240 bits 240 bits
bl 256 NA NA
b2 16 16 16
W(Q) 32-160 32-160 32-160
1f 0.68 0.59 0.53

. We investigate the retrieval performance and storage require-
ment of dynamic signature file methods in the following three

cases.

CASE 1 A data file, consists of 10,000 documents and the

page size is 1K bytes.

CASE 2 A data file consists of 10,000 documents and the

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 4, 1997 41

page size is 2K bytes.
CASE 3 A data file consists of 100,000 documents and the
page size is 1K bytes.

Figure 2 (a), (b), (c) show the retrieval performances of the
dynamic signaturé file methods on the CASE 1, CASE 2, CASE
3, respectively. The theoretical results show that the HS file
achieves about 240% and 300% performance gains on retrieval
over the Quick Filter and the S-tree on the average.

Table 3 illustrates the storage overheads of the dynamic signa-
ture file methods on the three cases. The storage overheads of
the HS file, Quick Filter and S-tree are about 10.1%, 11.5% and
18.7% on the average. The HS file uses the least storage space,
while S-tree is worst.

1000
800

—o—HS file
———Q.F.
—— S—tree

600
400

200

of block access

0 L i ‘ 1
2 4 6 8 10
#Qf words in the query

(a) CASE 1

400
350
300
250
200
150
100

—o—HS file
———-Q.F.
—— S ree

of block access

#

(o)

(@]
T

0 X R
2 4 6 8 10
-#of words in the query
{(b) CASE 2

8000
7000
6000
5000 —o—HS file
4000 ———Q.F.
3000 —— S -~{ree
2000

1000

0 L L
2 4 5 8 10
#of words in the query

(c) CASE 3

of block access

Fig. 2. Analytic retrieval performance.

Table 3. Storage overhead of dynamic signature file methods.

Mothod Experiment | ~agp | CASE 2 CASE 3
S-tree 1,845 1,870 19,240

Quick Filter 1,151 1,163 11,430

HS File 983 1,031 10215

Since we assumed that document signatures follow unform
distribution, probabilities that overflow occurs in the HS file,

Quick Filter and S-tree are -, le and L, respectively.
1 (4

Therefore, the «,, o, and o, are directly proportional to Tl,’

le and le, respectively. When the database consists of 100,000
documents and the number of frames is 8, the average number
of blocks accessed in order to insert one document in the HS
file, Quick Filter and S-tree is about 11, 2 and 8, respectively.
That is, the Quick Filter achieves the best insertion performance,
while the HS file is the worst. However, the difference of
insertion performance between the HS file and the Quick Filter
is very small over that of retrieval performance between them. As
a result, since in the information retrieval applications, retrievals
occur much more frequently than insertions, we can see that the
HS file is significantly better than other dynamic signature file
methods, in terms of whole system performance.

However, it is very difficult to design the analytic cost models
correctly estimating such portions in terms of the retrieval per-
formance because the number of false matches and the number
of block accesses to process the given multikey query may vary
on the real environment. As we also can not correctly estimate
the average page load factor. of each method and the heights of
HS file and S-tree, the analytic models on storage overhead and
insertion performance are not considered to be correct. Therefore,
to verify the analytic cost models, we actually implement them
and run the experiments in section 4.

IvV. Experiments

In this section, to compare the performance of dyhamic signa-
ture file methods and investigate the characteristics of the HS
file, we actually implement them and perform extensive experi-
ments with various data distributions: uniform, normal and expo-
nential. Three basic distributions were used over the range of
[—2%,2%~1]: 1) a uniform distribution, 2) a normal distribution
N(,0), where =1/3x2" and 3) an exponential distribution
1/6xe " where 6=1/4x2®. The experiments are also per-
formed for various sizes of databases and various performance
parameters as shown in Table 2. We use 100 sample queries to
evaluate the characteristics of the HS file and the performances
of the dynamic signature file methods. We discuss the perfor-
mance comparison of the dynamic signature file methods with

42 YOO et al. : ANALYSING PERFORMANCE CHARACTERISTICS OF DYNAMIC SIGNATURE FILE METHODS

,, 7000
% 6000

§ 5000 ——

< 4000 ~o— #4

© 3000 —— 8

- 2000 -O-#6
s« 1000

0 , oL

2 4 6 8 10
of keywords in the query

Fig. 3. Retrieval performance of the HS file according to the
number of frames.

various numbers of frames and with various types of queries.
For convenience, we discuss the performance comparison of the
dynamic signature file methods when 100,000 documents with
various numbers of frames and with various types of queries are
used and the page size is 1 Kbytes. This is because experimental
results of the remaining cases used in the analytic cost models
are very similar to those of this case.

First, we investigate how much frame-based document signature
construction affects the retrieval performance. When the number
of frames chosen for word signature is sixteen, we found that
the retrieval performance of frame-based document signature con-
struction is about 20% better than the conventional document
signature extraction method. Second, we investigate the retrieval
performance of the HS file according to the number of frames
in the leaf node when the number of documents is 100,000. We
can see through Figure 3 that the larger the number of frames
is, the better the retrieval performance is. When the size of a
document signature is 512 bits and the size of a pointer is 4
bytes, the HS file has at most sixteen frames in the leaf node.
The reason is that when the HS file has only one pointer block
in the leaf node, the size of a frame signature must not be less
than that of a pointer. As a result, the retrieval pelfonnance of
the HS file ﬁsing sixteen frames is about 3.3 times better than
that of the HS file using two frames.

According as the number of frames in the leaf nodes is
increased, the storage space ‘that the HS file uses is shown in
Figure 4. We can see through the figure that when constructing
HS file, the more the number of frames in the leaf nodes, the
lower the storage space that it occupies. This is because according
as the number of frames in the leaf node is increased, the occur-
rence rate of overflow in the HS file is decreased, and thus the
number of its intemal nodes and the height of HS files is reduced.

Figure 5 shows experimental results on retrieval of each
dynamic signature file method when data follows uniform,
normal and exponential distributions. The number of frames in
the leaf node of the HS file is sixteen. In the figure, symbols ‘U,
N and E represent uniform, normal and exponentiail distributions,
respectively. Figure 5(a) shows that the HS file achieves greatly

1600
1400 |
1200 |
1000 [
800 }
600
400
200
0 — —
2 4 8 16

#of frame in the leaf node

storage overhea

Fig. 4. Storage overhead of the HS file acéording to the number
of frames.

similar retrieval performance independently of data distributions.
However, we can see through Figure 5(b) and (c) that the Quick

. Filter and S-tree are somewhat dependent on the data distri-

butions. The retrieval performance of each method, when data
follows uniform distribution, is better‘ than that of each method
when data follows skewed distributions such as normal and
exponential distributions.

Figure 6 illustrates the retrieval performance of dynamic
signature file methods when data follows uniform distribution
and the number of frames in the leaf node of the HS file is 16.
We can see through Figure 6 that the HS file is much more
efficient than the other dynamic signature file methods, inde-
pendent of the number of words in the query. From the
experimental results, we showed that the HS file achieved about

180~360% and about 200~400% performance gains on retriev-

_al over Quick Filter and S-tree, on the average. This is because

the HS file uses frame-based signature extraction method and a
unique retrieval process[15].

When the number of documents is 100,000 and the number of
frames is 16, the storage overheads of the HS file, Quick Filter
and S-tree are about 9.8%, 10.3% and 21.2%, respectively. As a
result, the storage overhead of the HS file is much less than that
of S-tree, ‘while it is similar to that of the Quick Filter.

When th number of frames in the HS file is 16, the average
number of blocks accessed in order to insert one document in
the HS file, Quick Filter and S-tree is about 20, 4 and 10 on the
average, respectively. We found that the Quick Filter achieves
the best insertion performance, while the HS file achieves the
worst. The reason is that the Quick Filter is constructed based
on the linear hashing and the HS file uses the frame-sliced approach
to the leaf node. In the information retrieval applications where
retrievals occur much more frequently than insertions, however,,
such difference of insertion performance among dynamic signature
file methods can be ignored.

In order to verify the correctness of the analytic model, the
error rates on retrieval time, storage overhead and insertion time
are computed as folloWs, where E and T indicate a theoretical

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL. 2, NO. 4, 1997 43

2500
(9]
o
3 2000
S 1500 ——E
9 ——N
< 1000 Y
S 500
I
O i] L
2 4 6 8 10
of words in the query
(a) HS File
10000
(7]
[%2]
§ 8000
S 6000 ——E
8 ——N
o 4000 -y
S 2000
e
O 1 1 1 .
2 4 (¢ 8 10
ot words in the auery
(b) Quick Filter
10000
(]
(%]
& 8000 L
8 ——EF
~ 8000
(o) ‘ ——N
5 4000 ¢ [y
S 2000
W
0 . .
2 4 6 8 10
of words in the query
(c) S-tree

Fig. 5. Retrieval performance of dynamic signature file methods
according to data distributions.

7000 :
(]
2 6000
S 5000 e

4000 o fle
S 3000 o-Q.F
o | —2—S—ree|
% 2000
1000 | .

0]

2 4 6 8 10
of words In the query

Fig. 6. Experimental retrieval performance of dynamic signature
file methods.

result and an experimental result, respectively. The error rates on
retrieval time are 0.5~7% and 0.5~15% in case of 10,000 and

100,000 documents respectively.
Error Rate = [Max(T,E)-Min(T,E)] | Max(T,E)

The error rates on storage overhead of HS file and Quick
Filter are very small. However the difference between analytic
model and experimental result of S-tree(2.5%) is more than that of
HS file(0.3%) and Quick Filter(1.2%). The error rates on inser-
tion are very small. As a result, the conclusion from the experi-
ment is that the analytic and experimental results agree well. ‘

V. Discussion

In this section, we summarize the results in a guideline that
provides information for selecting a signature file structure for
dynamic applications. To do this, we first present criteria that
should allow users to express specific characteristics of their
applications. We extend criteria for storage structures by Tiberio
[13]. Secondly, we provide guidelines for the most effective

usage of a signature file to a given operational environment.

1. Application Characteristics and Guideline Criteria

Many dynamic applications such as office information systems,
geographical information systems, design applications(CAD/
CAM), advanced information retrieval systems and so on require
the processing of the documents with multimedia datae.g. text,
image, voice, etc.). The multimedia data documents are regarded
as the data representation of complex entities. For example, a
document may consist of attributes(e.g., author, title, publisher,
date), text(e.g., message, report, program source), imagé(e.g., digi-
tized photograph, pie chart) or voice(e.g., voice annotation).

Multimedia documents are typically large and can be consi-
dered as a consecutive area of bytes with variable length from
the data storage point of view. They are identified by a unique
document identifier. Currently, we consider only documents with
two types of data, text and image among multimedia data types.
The text query expresses the fact that, in a typical query on text
data, only a small set of words is used as a search pattern.
Since the total number of words in the natural language text is
high, the selectivity of individual words is also high. Text
queries with only one word are rare and those with many words
that result in a query weight higher than 50% of the maximum
query signature weight, cannot be considered at all.

The specification of a image data query reflects the fact that
the number of documents that can be recognized by image ana-
lyzers is much smaller than the number of distinct words in a
natural language text. Obviously, selectivity of the image data
descriptors is much lower and the specification of a reasonable
image query leads to query signatures with higher weights than
for text queries.

In order to get a storage structure that is best suitable for

44 YOO et al. : ANALYSING PERFORMANCE CHARACTERISTICS OF DYNAMIC SIGNATURE FILE METHODS

specific environment, we may classify the methods according to
their -suitability degree for each criteria. To do this, we have
chosen the following levels : A = excellent, B = good, C = fair, D
=requires a little effort, E = requires much effort, F = cannot use
at all. '

Now the criteria for signature file structures are presented
based on Tiberio’s criteria[13]. The dynamic storage structures
may have the following four criteria that influence their
.performance: (1) query signature weight, (2) the size of a data
file, (3) storage overhead, (4) support of applications.

As we have seen in previous section, query signature weight
is also related to the type of multimedia data. Low-weight
queries are typical for text data of natural language, while
heavy-weight queries are typical for image data such as technical
drawing, photograph and so on. Since the number of distinct
words in the text data is very large, the selectivity of one word is
very high and usually few words are enough to form a selective
query.

On the other hand, the number of distinct descriptors in image
documents is low. The reason is that good general image ana-
lyzers have not been yet developed. Most of image analyzers
depend on applications and are capable of recognizing only
specialized sets of components classified as a descriptor. In order
to find an image document, we should give a query with many
descriptors because, in general, the selectivity of those descrip-
tors is very low. As a result, the query signature weights for image
documents is very heavy. It should be noted that the query sig-
nature weight does not depend much on the number of descrip-
tors in the documents. The total of distinct descriptors is much
more important. We consider the following three criteria regard-
ing query signature weight: SS1 =low, SS2 = medium, SS3 = high.

Since the performance of the storage structures depends on the
size of a document file in the signature files, we consider the
following three criteria: SS4 = small, SS5 = medium, SS6 = large.
The last criterion is SS7 = space requirements. This will make it
possible to consider the storage structures according to their
convenience in terms of space overhead.

2. Selection Guidelines for Dynamic Applications

Until now, we have investigated and analyzed the performance
and characteristics of dynamic signature file organizations. Based
on these researches, we address a guideline to choose the most
appropriate signature file structure for a variety of applications.

Since all the information is very general and even vague, a
numeric form is less suitable. therefore, we evaluate various access
methods using grades described in the previous subsection. The
main contribution of this work is the performance comparison
framework that can be used to select a good implementation
configuration for a specific problem. To illustrate the process of
decision-making, we consider two different files of multimedia
data. One is office text data files and the other is a constantly

growing image file with few updates.

Table 4 shows the degrees of suitability of dynamic signature
file methods according to the criteria of storage structures. The
SSF is a simple file of fixed-length signatures[16]. It is called
single-level signature file or signature file method with bit-string
representation. Table 4 is based on the results of performance
analysis of dynamic signature file methods based on analytic
cost models and experiments. For the application such as the
office text file, HS file is much better than any other dynamic
signature file method. The reason is that a office text file is
characterized by low weight query signatures. For the applica-
tions such as image files, the situation is different because of
large data files and higher query signature weights that we can
expect for image queries. For such conditions, we recommend
that quick filter or HS file is used. However, even for high
weight queries, HS file is more efficient than quick filter.

Table 4. Degrees of convenience of dynamic storage structures.

Criteria

Dynamic Storage

Query weights Size of data file | SR
Structures
SS1 | 882 | SS3 | SS4 | SS5 | SS6 | S§7
SSF
S-tree

Quick Filter

w | m|m 9
> |O|lojo
> | W |w| U
alwialn
> | WU | O
> > | U | m
wiw o>

HS

ViI. Conclusions

We have evaluated the performance of dynamic signature file
methods in terms of retrieval time, storage overhead and inser-
tion time. We have first developed analytic cost models and
evaluated the space-time performance of these methods in the
various environments. Then, we have carried out extensive perfor-
mance experiments with various data distributions such as uniform,
normal and exponential distributions and a wide range of parameter
values. We have found that experiments closely agree with the
analytic cost models, which strongly substantiate our performance
results and enable the analytic cost models to be used for
various types of environments that are difficult to be constructed
for actual performance experiments. Through analytic cost models
and various experiments, we have shown that the HS file has
improved performance significantly in both the retrieval time and
the storage overhead over the methods proposed earlier.

. We have. also summarized the dynamic signature file methods
with emphasis on their suitability for dynamic applications proc-
essed under different conditions. The criteria for”dynamic storage

- structures were presented for guidelines that can be used to select

effective implementations for specific applications. Based on the
criteria, we have provided a dynamic storage structure that can

JOURNAL OF ELECTRICAL ENGINEERING AND INFORMATION SCIENCE, VOL 2, NO. 4, 1997

outperform others for the most effective usage to a given opera-
tional environment.

References

[1] J. W. Chang. J. H. Lee and Y. J. Lee, “Multikey Access
Methods Based on Term Discrimination and signature
Clustering,” ACM SIGIR, pp. 176-185, 1989.

[21 S. Christodoulakis and C. Faloutsos, “Design Considerations
for a Message File Server,” IEEE Trans. on Software En-
gineering, Vol. SE-10, No. 2, pp. 201-210, Mar. 1984.

(3] S. Christodoulakis et al., “Development of a Multimedia
information system for an Office Environment,” VLDB ’84,
pp. 261-271, 1984,

[4] S. Christodoulakis, “Issues in the Architecture of a Docu-
ment Archiver using Optical Disk Technology,” ACM
SIGMOD, pp. 34-50, May 1985.

[51 U. Deppisch, “S-tree: A Dynamic Balanced Signature Index
for Office Retrieval,” ACM SIGIR, pp. 77-87, 1986.

f{6] J. R. Files and H. D. Huskey, “An Information Retrieval
System Based on Superimposed Coding,” Proc. of the Fall
Joint Computer Conf., pp. 423-432, 1969.

[7] C. Faloutsos, “Access methods for Text,” Computing Sur-

veys, Vol. 17, No. 1, pp. 49-74, 1985.

C. Faloutsos and S. Christodoulakis, “Description and Perfor-

mance File Method for Office Filing,” ACM Trans. on

Information Systems, Vol. 5, No. 3, pp. 237-257, 1987.

[9] C. Faloutsos, “Signature-based Text Retrieval Methods : A
Survey,” IEEE Computer Society Technical Committee on
Data Engineering, Vol. 13, No. 1, pp. 25-32, Mar. 1990.

{10] Z. Lin and C. Faloutsos, “Frame-Sliced Signature Files,”
IEEE Trans. on Knowledge and Data Engineering, Vol. 4,
No. 3, pp. 281-289, Jun. 1992.

[11] C. S. Roberts, “Partial Match Retrieval via the Method of
the Superimposed Codes,” Proc. IEEE 67, pp. 1624-1642,
Dec. 1979.

[12] R. Sacks-Davis and K. Ramamohanarao, “Multikey Access
Methods based on Superimposed Coding Techniques,” ACM
Trans. on Database Systems, Vol. 12, No. 4, pp. 655-696,
Dec. 1987.

[13] P. Tiberio and P. Zezula, “Selecting Signature Files for
Specific Applications,” S5th Annual European Computer
Conference, pp. 718-725, May 1991.

[14] J. S. Yoo, J. W. Chang, Y-J Lee and M. H. Kim, “Per-
formance Evaluation of Signature-Based Access Mechanisms
for Efficient Information Retrieval,” IEICE Trans. on Infor-
mation and Systems, Vol. E76-D, No. 2, pp. 179-183, Feb.
1993.

[15] J. S. Yoo, Y-J Lee, J. W. Chang and M. H. Kim, “The HS
File : A New Dynamic Signature File Method for Efficient
Information Retrieval,” 5th International Conference, DEXA

[8

—

’94, Athens Greece, pp. 571-580, Sep. 1994.

{16] P. Zezula, F. Rabitti and P. Tiberio, “Dynamic Partitioning
of Signature Files,” ACM Trans. on Information Systems,
Vol. 9, No. 4, pp. 336-369, Oct. 1991.

Jae-Soo Yoo received the B.S. degree in
computer engineering from Chonbuk Na-
tional University in 1989, and the M.S.

P - and Ph. D. degrees in computer science
. i'w SRR from the Korea Advanced Institute of
L '\R . /} Science and Technology(KAIST), in 1991

and 1995. From March 1995 to August
1996, he was a member of the faculty of

the computer science at the Mokpo National University. He has
been as assistant professor of computer and communication
engineering at the Chungbuk National University since 1996.
His research interests include database systems, multimedia
database, information retrieval and distributed object computing.

Kil-Seong Choi received the B.S. degree
in the department of computer science

e PR from Taejon Industrial University in 1988,
T and the M.S. degree in the department of

g &
computer science from Suwon University

in 1992. Since 1996, he has been studying
(u\ database systems at the department of

computer and communication engineering
in Chungbuk National University for Ph. D. degree. His research
interests include Multimedia and Imaging Database Systems, and
Information Retrieval.

Myoung-Ho Kim received the B.S. and
M.S. degrees in computer engineering
from Seoul National University, Seoul,
Korea in 1982 and 1984, respectively, and
the Ph. D. degree in computer science
from Michigan State University, East
Lansing in 1989. Since 1989 he has been
with the Department of Computer Science,
Korea Advanced Institute of Science and Technology (KAIST),
Taejon where he currently is an associate professor. His research
interests include database systems, distributed and parallel data-
base, data mining, multidatabase, information retrieval and real-time
database.

